Publications by authors named "Seungjun Myeong"

In recent years, Li- and Mn-rich layered oxides (LMRs) have been vigorously explored as promising cathodes for next-generation, Li-ion batteries due to their high specific energy. Nevertheless, their actual implementation is still far from a reality since the trade-off relationship between the particle size and chemical reversibility prevents LMRs from achieving a satisfactory, industrial energy density. To solve this material dilemma, herein, a novel morphological and structural design is introduced to Li Mn Ni Co O , reporting a sub-micrometer-level LMR with a relatively delocalized, excess-Li system.

View Article and Find Full Text PDF

Li- and Mn-rich layered oxides (LMRs) have emerged as practically feasible cathode materials for high-energy-density Li-ion batteries due to their extra anionic redox behavior and market competitiveness. However, sluggish kinetics regions (<3.5 V vs Li/Li ) associated with anionic redox chemistry engender LMRs with chemical irreversibility (first-cycle irreversibility, poor rate properties, voltage fading), which limits their practical use.

View Article and Find Full Text PDF

Lithium-excess 3d-transition-metal layered oxides (LiNiCoMnO, >250 mAh g) suffer from severe voltage decay upon cycling, which decreases energy density and hinders further research and development. Nevertheless, the lack of understanding on chemical and structural uniqueness of the material prevents the interpretation of internal degradation chemistry. Here, we discover a fundamental reason of the voltage decay phenomenon by comparing ordered and cation-disordered materials with a combination of X-ray absorption spectroscopy and transmission electron microscopy studies.

View Article and Find Full Text PDF

Only a very limited amount of the high theoretical energy density of LiCoO as a cathode material has been realized, due to its irreversible deterioration when more than 0.6 mol of lithium ions are extracted. In this study, new insights into the origin of such low electrochemical reversibility, namely the structural collapse caused by electrostatic repulsion between oxygen ions during the charge process are suggested.

View Article and Find Full Text PDF

Li-rich materials are considered the most promising for Li-ion battery cathodes, as high energy densities can be achieved. However, because an activation method is lacking for large particles, small particles must be used with large surface areas, a critical drawback that leads to poor long-term energy retention and low volumetric energy densities. Here we propose a new material engineering concept to overcome these difficulties.

View Article and Find Full Text PDF