Cell-free DNA (cfDNA), a fragmented DNA circulating in blood, is a promising biomarker for cancer diagnosis and monitoring. Standardization of cfDNA isolation to enhance the sensitivity of molecular analyses in prostate cancer (PCa) is required. Towards this goal, we optimized existing methods to obtain a high quantity and quality of cfDNA from low volumes of plasma.
View Article and Find Full Text PDFPatient stratification remains a challenge for optimal treatment of prostate cancer (PCa). This clinical heterogeneity implies intra-tumoural heterogeneity, with different prostate epithelial cell subtypes not all targeted by current treatments. We reported that such cell subtypes are traceable in liquid biopsies through representative transcripts.
View Article and Find Full Text PDFThe androgen receptor (AR) plays a crucial role in the development and homeostasis of the prostate and is a key therapeutic target in prostate cancer (PCa). The gold standard therapy for advanced PCa is androgen deprivation therapy (ADT), which targets androgen production and AR signaling. However, resistance to ADT develops via AR-dependent and AR-independent mechanisms.
View Article and Find Full Text PDFProstate cancer (PCa) clinical heterogeneity underscores tumor heterogeneity, which may be best defined by cell subtypes. To test if cell subtypes contributing to progression can be assessed noninvasively, we investigated whether 14 genes representing luminal, neuroendocrine, and stem cells are detectable in whole blood RNA of patients with advanced PCa. For each gene, reverse transcription quantitative polymerase chain reaction assays were first validated using RNA from PCa cell lines, and their traceability in blood was assessed in cell spiking experiments.
View Article and Find Full Text PDF