Publications by authors named "Sergio Timoteo"

Species phenology is being altered by ongoing climate changes with yet underappreciated consequences for ecological processes and ecosystem stability. Contrary to what happens with some key life events of flowering plants, comparatively little information exists about fern and lycophyte phenology and how it is affected by the current climatic changes. In part, this stems from the lack of long-term datasets.

View Article and Find Full Text PDF

Non-native trees disrupt ecological processes vital to native plant communities. We studied how forests dominated by and affect the role of birds as dual pollinators and seed dispersers in a region heavily impacted by these two non-native species. We compared bird-plant interactions in the native and in the two non-native forest types.

View Article and Find Full Text PDF
Article Synopsis
  • - Seed dispersal is vital for the survival of ecosystems, particularly in fragmented areas like Europe, but ongoing loss of animals might jeopardize this process.
  • - A comprehensive review was conducted to construct a seed dispersal network across Europe and assess the conservation status of species involved, using IUCN data.
  • - The findings indicate that one-third of disperser species are at risk of extinction, with 30% of plant species relying on those dispersers facing threats, revealing a significant seed dispersal crisis in Europe that requires immediate attention.
View Article and Find Full Text PDF

Species phenology - the timing of key life events - is being altered by ongoing climate changes with yet underappreciated consequences for ecosystem stability. While flowering is generally occurring earlier, we know much less about other key processes such as the time of fruit ripening, largely due to the lack of comprehensive long-term datasets. Here we provide information on the exact date and site where seeds of 4,462 taxa were collected for the Index Seminum (seed exchange catalogue) of the Botanic Garden of the University of Coimbra, between 1926 and 2013.

View Article and Find Full Text PDF

Agriculture is vital for supporting human populations, but its intensification often leads to landscape homogenization and a decline in non-provisioning ecosystem services. Ecological intensification and multifunctional landscapes are suggested as nature-based alternatives to intensive agriculture, using ecological processes like natural pest regulation to maximize food production. Birds are recognized for their role in increasing crop yields by consuming invertebrate pests in several agroecosystems.

View Article and Find Full Text PDF

Background: The Gorongosa National Park (Mozambique) is one of the most emblematic protected areas in Africa, well known for its vertebrate biodiversity and restoration ecology efforts following the Mozambican civil war in 1992. The invertebrate biodiversity of Gorongosa National Park is still poorly studied, although the scarce information available indicates the existence of a rich number of species, namely in the case of tiger- and ground-beetles (Coleoptera, Caraboidea). Moreover, the study of arthropod assemblages is key for designing conservation practices since they are potentially accurate biodiversity and ecological indicators.

View Article and Find Full Text PDF

Species interactions can propagate disturbances across space via direct and indirect effects, potentially connecting species at a global scale. However, ecological and biogeographic boundaries may mitigate this spread by demarcating the limits of ecological networks. We tested whether large-scale ecological boundaries (ecoregions and biomes) and human disturbance gradients increase dissimilarity among plant-frugivore networks, while accounting for background spatial and elevational gradients and differences in network sampling.

View Article and Find Full Text PDF

Habitat loss is currently a major threat to biodiversity, affecting species interactions, such as plant-pollinator interactions. This is particularly important in self-incompatible plants relying on pollinators to reproduce and sustain their populations. Here, we evaluated how habitat loss affects the pollination system, plant individual-pollinator species interaction network, and plant reproductive fitness of the self-incompatible Jasione maritima var.

View Article and Find Full Text PDF

Ongoing environmental changes are affecting physical, chemical and biological soil components. Evidence of impacts of soil changes on pollinators' and seed dispersers' behaviour, fitness and density is scarce, but growing. Here, we reviewed information on such impacts and on a number of mechanisms that may explain its propagation, taking into account the full range of resources required by the large and diverse number of species of these two important functional groups.

View Article and Find Full Text PDF

Mutualistic interactions like those established between plants and mycorrhizal fungi or seed dispersers are key drivers of plant population dynamics and ecosystem functioning; however, these interactions have rarely been explored together. We assembled a tripartite fungi-plant-disperser network in the Gorongosa National Park-Mozambique, to test (1) if diversity and importance of plant mutualists above- and belowground are correlated, and (2) whether biotically and abiotically dispersed plants are associated with distinct arbuscular mycorrhizal fungi (AMF). We quantified seed dispersal by animals for 1 year and characterized the AMF of 26 common plant species.

View Article and Find Full Text PDF

The Anthropocene is marked by an unprecedented homogenisation of the world's biota, confronting species that never co-occurred during their evolutionary histories. Interactions established in these novel communities may affect ecosystem functioning; however, most research has focused on the impacts of a minority of aggressive invasive species, while changes inflicted by a less conspicuous majority of non-invasive alien species on community structure are still poorly understood. This information is critical to guide conservation strategies, and instrumental to advance ecological theory, particularly to understand how non-native species integrate in recipient communities and affect the interactions of native species.

View Article and Find Full Text PDF

The original version of this Article contained Figshare links in the Code availability statement that were not functional. The correct Figshare links to MATLAB scripts and R code used in this study are https://doi.org/10.

View Article and Find Full Text PDF

A population dynamics model was developed to assess the short and long-term effects of temperature and salinity variations in the common goby Pomatoschistus microps in a Portuguese estuary (Minho estuary, NW Portugal). The population was divided into juveniles, females and males, which constituted the model's state variables. Linear regressions between the observed and the predicted density of juveniles, females and the total population were significant.

View Article and Find Full Text PDF

Species interaction networks are traditionally explored as discrete entities with well-defined spatial borders, an oversimplification likely impairing their applicability. Using a multilayer network approach, explicitly accounting for inter-habitat connectivity, we investigate the spatial structure of seed-dispersal networks across the Gorongosa National Park, Mozambique. We show that the overall seed-dispersal network is composed by spatially explicit communities of dispersers spanning across habitats, functionally linking the landscape mosaic.

View Article and Find Full Text PDF

Large animals are important seed dispersers; however, they tend to be under a high extinction risk worldwide. There is compelling evidence that the global biodiversity crisis is leading to the deterioration of several ecosystem functions, but there is virtually no information on how large-scale refaunation efforts can reinstate seed dispersal. We evaluated the effectiveness of a 62-km wildlife sanctuary, which was established to recover populations of large mammals in Gorongosa National Park (Mozambique), in restoring seed dispersal.

View Article and Find Full Text PDF

Understanding the distribution and diversity of arbuscular mycorrhizal fungi (AMF) and the rules that govern AMF assemblages has been hampered by a lack of data from natural ecosystems. In addition, the current knowledge on AMF diversity is biased towards temperate ecosystems, whereas little is known about other habitats such as dry tropical ecosystems. We explored the diversity and structure of AMF communities in grasslands, savannas, dry forests and miombo in a protected area under dry tropical climate (Gorongosa National Park, Mozambique) using 454 pyrosequencing.

View Article and Find Full Text PDF

The pressing need to conserve and restore habitats in the face of ongoing species loss [1, 2] requires a better understanding of what happens to communities when species are lost or reinstated [3, 4]. Theoretical models show that communities are relatively insensitive to species loss [5, 6]; however, they disagree with field manipulations showing a cascade of extinctions [7, 8] and have seldom been tested under field conditions (e.g.

View Article and Find Full Text PDF