Publications by authors named "Sergi Colomer-Castell"

Viral diversity and disease progression in chronic infections, and particularly how quasispecies structure affects antiviral treatment, remain key unresolved issues. Previous studies show that advanced liver fibrosis in long-term viral infections is linked to higher rates of antiviral treatment failures. Additionally, treatment failure is associated with high quasispecies fitness, which indicates greater viral diversity and adaptability.

View Article and Find Full Text PDF

In quasispecies diversity studies, the comparison of two samples of varying sizes is a common necessity. However, the sensitivity of certain diversity indices to sample size variations poses a challenge. To address this issue, rarefaction emerges as a crucial tool, serving to normalize and create fairly comparable samples.

View Article and Find Full Text PDF

The repeated failure to treat patients chronically infected with hepatitis E (HEV) and C (HCV) viruses, despite the absence of resistance-associated substitutions (RAS), particularly in response to prolonged treatments with the mutagenic agents of HEV, suggests that quasispecies structure may play a crucial role beyond single point mutations. Quasispecies structured in a flat-like manner (referred to as flat-like) are considered to possess high average fitness, occupy a significant fraction of the functional genetic space of the virus, and exhibit a high capacity to evade specific or mutagenic treatments. In this paper, we studied HEV and HCV samples using high-depth next-generation sequencing (NGS), with indices scoring the different properties describing flat-like quasispecies.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the evolution of hepatitis E virus (HEV) quasispecies in a chronically infected patient treated with ribavirin for nearly 6 years, highlighting changes in viral genetic diversity over time.
  • During treatment, an increase in rare viral variants was observed, while the dominant sequence saw a significant decrease in frequency amid periods of treatment insensitivity.
  • The findings suggest that using mutagenic antiviral therapies alone, without effective complementary treatments, may lead to increased viral diversity and potential resistance, indicating a need for caution in treatment strategies.
View Article and Find Full Text PDF

Epidemics and pandemics have occurred since the beginning of time, resulting in millions of deaths. Many such disease outbreaks are caused by viruses. Some viruses, particularly RNA viruses, are characterized by their high genetic variability, and this can affect certain phenotypic features: tropism, antigenicity, and susceptibility to antiviral drugs, vaccines, and the host immune response.

View Article and Find Full Text PDF

The SARS-CoV-2 Omicron variant emerged showing higher transmissibility and possibly higher resistance to current COVID-19 vaccines than other variants dominating the global pandemic. In March 2020 we performed a study in clinical samples, where we found that a portion of genomes in the SARS-CoV-2 viral population accumulated deletions immediately before the S1/S2 cleavage site (furin-like cleavage site, PRRAR/S) of the spike gene, generating a frameshift and appearance of a premature stop codon. The main aim of this study was to determine the frequency of defective deletions in prevalent variants from the first to sixth pandemic waves in our setting and discuss whether the differences observed might support epidemiological proposals.

View Article and Find Full Text PDF

The changes occurring in viral quasispecies populations during infection have been monitored using diversity indices, nucleotide diversity, and several other indices to summarize the quasispecies structure in a single value. In this study, we present a method to partition quasispecies haplotypes into four fractions according to their fitness: the master haplotype, rare haplotypes at two levels (those present at <0.1%, and those at 0.

View Article and Find Full Text PDF

Background: Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the main concern is whether reinfections are possible, and which are the associated risk factors. This study aims to describe the clinical and molecular characteristics of 24 sequence-confirmed reinfection SARS-CoV-2 cases over 1 year in Barcelona (Catalonia, Spain).

Methods: Patients with > 45 days between two positive PCR tests regardless of symptoms and negative tests between episodes were initially considered as suspected reinfection cases from November 2020 to May 2021.

View Article and Find Full Text PDF

Virus pandemics have happened, are happening and will happen again. In recent decades, the rate of zoonotic viral spillover into humans has accelerated, mirroring the expansion of our global footprint and travel network, including the expansion of viral vectors and the destruction of natural spaces, bringing humans closer to wild animals. Once viral cross-species transmission to humans occurs, transmission cannot be stopped by cement walls but by developing barriers based on knowledge that can prevent or reduce the effects of any pandemic.

View Article and Find Full Text PDF

Herein, we describe the genetic diversity of circulating SARS-CoV-2 viruses by whole-genome sequencing (WGS) in Barcelona city (Catalonia, Spain) throughout the first four pandemic waves. From weeks 11/2020-24/2021, SARS-CoV-2-positive respiratory samples were randomly selected per clinical setting (80% from primary care or 20% from the hospital), age group, and week. WGS was performed following the ARTICv3 protocol on MiSeq or NextSeq2000 Illumina platforms.

View Article and Find Full Text PDF

A common trait among RNA viruses is their high capability to acquire genetic variability due to viral and host mechanisms. Next-generation sequencing (NGS) analysis enables the deep study of the viral quasispecies in samples from infected individuals. In this study, the viral quasispecies complexity and single nucleotide polymorphisms of the SARS-CoV-2 gene of coronavirus disease 2019 (COVID-19) patients with mild or severe disease were investigated using next-generation sequencing (Illumina platform).

View Article and Find Full Text PDF