Publications by authors named "Seonguk Kang"

Background: Ischemic stroke affects 15 million people worldwide, causing five million deaths annually. Despite declining mortality rates, stroke incidence and readmission risks remain high, highlighting the need for preventing readmission to improve the quality of life of survivors. This study developed a machine-learning model to predict 90-day stroke readmission using electronic medical records converted to the common data model (CDM) from the Regional Accountable Care Hospital in Gangwon state in South Korea.

View Article and Find Full Text PDF

Objectives: In the Fourth Industrial Revolution, there is a focus on managing diverse medical data to improve healthcare and prevent disease. The challenges include tracking detailed medical records across multiple institutions and the necessity of linking domestic public medical entities for efficient data sharing. This study explores MyHealthWay, a Korean healthcare platform designed to facilitate the integration and transfer of medical data from various sources, examining its development, importance, and legal implications.

View Article and Find Full Text PDF

Background: Worldwide, sepsis is the leading cause of death in hospitals. If mortality rates in patients with sepsis can be predicted early, medical resources can be allocated efficiently. We constructed machine learning (ML) models to predict the mortality of patients with sepsis in a hospital emergency department.

View Article and Find Full Text PDF

Pressure ulcers (PUs) are a prevalent skin disease affecting patients with impaired mobility and in high-risk groups. These ulcers increase patients' suffering, medical expenses, and burden on medical staff. This study introduces a clinical decision support system and verifies it for predicting real-time PU occurrences within the intensive care unit (ICU) by using MIMIC-IV and in-house ICU data.

View Article and Find Full Text PDF