Biotechnol Bioeng
August 2025
Mammalian perfusion culture offers high productivity for complex biologics but presents operational challenges in maintaining process stability. Real-time monitoring is essential to address such challenges while traditional analytical methods often fall short due to several limitations such as detection sensitivity and spectral overlap. Alternatively, data-driven soft sensors have gained traction for estimating key process variables indirectly.
View Article and Find Full Text PDFOmega-3 polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA, C20:5), are crucial dietary fats known for their numerous health benefits. However, traditional sources of EPA, like fish oil, raise sustainability and environmental concerns, underscoring the need for alternative production methods. The engineered oleaginous yeast has emerged as a promising candidate for sustainable production of EPA.
View Article and Find Full Text PDFRecombinant adeno associated virus (rAAV) vectors have become popular delivery vehicles for in vivo gene therapies, but demand for rAAVs continues to outpace supply. Platform processes for rAAV production are being developed by many manufacturers, and transient chemical transfection of human embryonic kidney 293 (HEK293) cells is currently the most popular approach. However, the cutting edge nature of rAAV process development encourages manufacturers to keep cell culture media formulations, plasmid sequences, and other details proprietary, which creates hurdles for small companies and academic labs seeking to innovate in this space.
View Article and Find Full Text PDFUnlabelled: Recombinant monoclonal antibodies (mAbs) are commonly produced using Chinese hamster ovary (CHO) cells and the cell culture medium used in bioreactors influences the yield and quality attributes of the protein drug products. The COVID 19 pandemic revealed a vulnerability in the supply chain for necessary reagents (such as culture medium and raw material) for maintaining un-interrupted production of protein drugs with consistent quality. The supply interruption for the cell culture medium ActiPro™ optimized for producing VRC01, an IgG1-κ mAb, from a CHO-K1 cell line, necessitated the search for alternate media.
View Article and Find Full Text PDFRecombinant adeno-associated viruses (rAAVs) comprise a promising viral vector for therapeutic gene delivery to treat disease. However, the current manufacturing capability of rAAVs must be improved to meet commercial demand. Previously published omics studies indicate that rAAV production through transient transfection triggers antiviral responses and endoplasmic reticulum stress responses in the host cell.
View Article and Find Full Text PDFHydrophobic feedstocks such as waste cooking oil have recently been considered for microbial biotransformation due to their abundance, low cost, and unique advantage for lipid-derived fermentation products. Most fermentations with hydrophobic substrates are conducted at the tube or flask scale (less than 1 L total volume) or with the hydrophobic substrate comprising a small fraction of the media. Low substrate concentrations require additional feeding.
View Article and Find Full Text PDFBiotechnol Bioeng
February 2025
In modern bioprocessing, cell culture media is one of the most significant cost drivers, yet the nutrients and other critical factors in the media are often not fully utilized. With the renewed emphasis on reducing the cost of bioprocessing, there is much interest in reducing the overall use of cell culture media. In this work, we introduce a mesoscale microfluidic separation device based on the ion concentration polarization (ICP) process to regenerate the spent media for reuse by removing critical waste products from the cell culture that are known to inhibit the growth of the cells.
View Article and Find Full Text PDFFront Mol Biosci
October 2024
Efficaciously assessing product quality remains time- and resource-intensive. Online Process Analytical Technologies (PATs), encompassing real-time monitoring tools and soft-sensor models, are indispensable for understanding process effects and real-time product quality. This research study evaluated three modeling approaches for predicting CHO cell growth and production, metabolites (extracellular, nucleotide sugar donors (NSD) and glycan profiles): Mechanistic based on first principle Michaelis-Menten kinetics (MMK), data-driven orthogonal partial least square (OPLS) and neural network machine learning (NN).
View Article and Find Full Text PDFAAPS PharmSciTech
October 2024
During pharmaceutical lyophilization processes, inter-vial drying heterogeneity remains a significant obstacle. Due to differences in heat and mass transfer based on vial position within the freeze drier, edge vials freeze differently, are typically warmer and dry faster than center vials. This vial position-dependent heterogeneity within the freeze dryer leads to tradeoffs during process development.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
September 2024
The recombinant adeno-associated virus (rAAV) vector is among the most promising viral vectors in gene therapy. However, the limited manufacturing capacity in human embryonic kidney (HEK) cells is a barrier to rAAV commercialization. We investigated the impact of endoplasmic reticulum (ER) protein processing and apoptotic genes on transient rAAV production in HEK293 cells.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
July 2024
The field of recombinant adeno-associated virus (rAAV) gene therapy has attracted increasing attention over decades. Within the ongoing challenges of rAAV manufacturing, the co-production of impurities, such as empty and partial capsids containing no or truncated transgenes, poses a significant challenge. Due to their potential impact on drug efficacy and clinical safety, it is imperative to conduct comprehensive monitoring and characterization of these impurities prior to the release of the final gene therapy product.
View Article and Find Full Text PDFTrends Biotechnol
September 2024
Genome-scale metabolic models (GEMs) of Chinese hamster ovary (CHO) cells are valuable for gaining mechanistic understanding of mammalian cell metabolism and cultures. We provide a comprehensive overview of past and present developments of CHO-GEMs and in silico methods within the flux balance analysis (FBA) framework, focusing on their practical utility in rational cell line development and bioprocess improvements. There are many opportunities for further augmenting the model coverage and establishing integrative models that account for different cellular processes and data for future applications.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
March 2024
The pharmaceutical industry employs various strategies to improve cell productivity. These strategies include process intensification, culture media improvement, clonal selection, media supplementation and genetic engineering of cells. However, improved cell productivity has inherent risk of impacting product quality attributes (PQA).
View Article and Find Full Text PDFA new biomanufacturing platform combining intracellular metabolic engineering of the oleaginous yeast Yarrowia lipolytica and extracellular bioreaction engineering provides efficient bioconversion of plant oils/animal fats into high-value products. However, predicting the hydrodynamics and mass transfer parameters is difficult due to the high agitation and sparging required to create dispersed oil droplets in an aqueous medium for efficient yeast fermentation. In the current study, commercial computational fluid dynamic (CFD) solver Ansys CFX coupled with the MUSIG model first predicts two-phase system (oil/water and air/water) mixing dynamics and their particle size distributions.
View Article and Find Full Text PDFRecombinant adeno-associated virus (rAAV) is one of the prominent gene delivery vehicles that has opened promising opportunities for novel gene therapeutic approaches. However, the current major viral vector production platform, triple transfection in mammalian cells, may not meet the increasing demand. Thus, it is highly required to understand production bottlenecks from the host cell perspective and engineer the cells to be more favorable and tolerant to viral vector production, thereby effectively enhancing rAAV manufacturing.
View Article and Find Full Text PDFBiotechnol Prog
January 2024
A majority of the biotherapeutics industry today relies on the manufacturing of monoclonal antibodies from Chinese hamster ovary (CHO) cells, yet challenges remain with maintaining consistent product quality from high-producing cell lines. Previous studies report the impact of individual trace metal supplemental on CHO cells, and thus, the combinatorial effects of these metals could be leveraged to improve bioprocesses further. A three-level factorial experimental design was performed in fed-batch shake flasks to evaluate the impact of time wise addition of individual or combined trace metals (zinc and copper) on CHO cell culture performance.
View Article and Find Full Text PDFBiotechnol Bioeng
November 2023
Recombinant adeno-associated virus (rAAV) vectors are a promising platform for in vivo gene therapies. However, cost-effective, well-characterized processes necessary to manufacture rAAV therapeutics are challenging to develop without an understanding of how process parameters (PPs) affect rAAV product quality attributes (PQAs). In this work, a central composite orthogonal experimental design was employed to examine the influence of four PPs for transient transfection complex formation (polyethylenimine:DNA [PEI:DNA] ratio, total DNA/cell, cocktail volume, and incubation time) on three rAAV PQAs related to capsid content (vector genome titer, vector genome:capsid particle ratio, and two-dimensional vector genome titer ratio).
View Article and Find Full Text PDFThe development of gene therapies based on recombinant adeno-associated viruses (rAAVs) has grown exponentially, so the current rAAV manufacturing platform needs to be more efficient to satisfy rising demands. Viral production exerts great demand on cellular substrates, energy, and machinery; therefore, viral production relies heavily on the physiology of the host cell. Transcriptomics, as a mechanism-driven tool, was applied to identify significantly regulated pathways and to study cellular features of the host cell for supporting rAAV production.
View Article and Find Full Text PDFBiotechnol Bioeng
September 2023
Gene therapy is a promising therapeutic approach for genetic and acquired diseases nowadays. Among DNA delivery vectors, recombinant adeno-associated virus (rAAV) is one of the most effective and safest vectors used in commercial drugs and clinical trials. However, the current yield of rAAV biomanufacturing lags behind the necessary dosages for clinical and commercial use, which embodies a concentrated reflection of low productivity of rAAV from host cells, difficult scalability of the rAAV-producing bioprocess, and high levels of impurities materialized during production.
View Article and Find Full Text PDFPreviously, we identified six inhibitory metabolites (IMs) accumulating in Chinese hamster ovary (CHO) cultures using AMBIC 1.0 community reference medium that negatively impacted culture performance. The goal of the current study was to modify the medium to control IM accumulation through design of experiments (DOE).
View Article and Find Full Text PDFDue to the favorable attributes of Chinese hamster ovary (CHO) cells for therapeutic proteins and antibodies biomanufacturing, companies generate proprietary cells with desirable phenotypes. One key attribute is the ability to stably express multi-gram per liter titers in chemically defined media. Cell, media, and feed diversity has limited community efforts to translate knowledge.
View Article and Find Full Text PDFTherapeutic protein productivity and glycosylation pattern highly rely on cell metabolism. Cell culture medium composition and feeding strategy are critical to regulate cell metabolism. In this study, the relationship between toxic metabolic inhibitors and their nutrient precursors was explored to identify the critical medium components toward cell growth and generation of metabolic by-products.
View Article and Find Full Text PDFInt J Pharm
November 2022
Pharmaceutical toxicity evaluations often use in vitro systems involving primary cells, cell lines or red blood cells (RBCs). Cell-based analyses ('bioassays') can be cumbersome and typically rely on hard-to-standardize biological materials. Amphotericin B (AmB) toxicity evaluations are primarily based on potassium release from RBCs and share these limitations.
View Article and Find Full Text PDFAsian J Pharm Sci
July 2022
Amphotericin B (AmB) is an amphiphilic drug commonly formulated in liposomes and administered intravenously to treat systemic fungal infections. Recent studies on the liposomal drug product have shed light on the AmB aggregation status in the bilayer, which heat treatment (curing) modifies. Although toxicity was found related to aggregation status - loose aggregates significantly more toxic than tight aggregates - the precise mechanism linking aggregation and toxicity was not well understood.
View Article and Find Full Text PDFThis work presents a compact model for the equipment capability limit of a common configuration of pharmaceutical lyophilizers, a product chamber separated from the condenser by a duct and isolation valve, at a wide range of design parameters. The equipment capability limit is one of the most important characteristics determining the lyophilization design space for a particular product, container, and equipment combination. Experimental measurements of equipment capability are time-consuming and expensive, especially at the production scale.
View Article and Find Full Text PDF