Publications by authors named "Senthil Rethinam"

Background: This study aimed to develop and evaluate a multifunctional oral wound care gel (OWCG) formulated with carboxymethyl cellulose (CMC), gelatin (GEL), and curcumin (CUR) to enhance oral soft tissue regeneration.

Methods: CMC was synthesized through etherification, whereas CUR was extracted using a modified ethanol-based method. OWCG was prepared and crosslinked using 5 % citric acid.

View Article and Find Full Text PDF

Background: Targeted, biologically-based therapeutic agents seek to reduce tumor burden and treatment side effects. Curcumin nanoparticle (CuNP)-based drug delivery systems conjugated have been shown to target and inhibit the growth of human malignant oral keratinocytes in vitro.

Purpose: The purpose of this study was to conjugate physiologically clotted fibrin (PCF) and CuNPs with bevacizumab (BVZ), characterize the newly formed nanoparticles, and test their growth inhibition on human oral cancer cells in vitro.

View Article and Find Full Text PDF

The purpose of this study was to develop a technique for synthesising hard tissue bone materials (HDBM) using natural components. The HDBM was created with SSP, CaCO, and Ru, mixed with deionised water, and compared to standard implants. Mechanical, physicochemical, and biocompatibility tests were conducted to assess the HDBM.

View Article and Find Full Text PDF

Objectives: In the present study, blends of polyvinyl alcohol (PVA), starch (SH), nanohydroxyapatite (Nano-HA), and reduced graphene oxide (r-GO) were used to fabricate an electrospun nano scaffold (ENS), via electrospinning for their potential application in oral and maxillofacial bone soft and hard tissue regeneration.

Materials And Methods: The scaffold was characterized for its physicochemical and mechanical properties. An invitro study was carried out using human osteoblast MG-63 bone cells.

View Article and Find Full Text PDF

The development and characterization of anticancer complex drugs (ACD), specifically Amyloid Beta Peptide (ABP) - Ruthenium III (Ru III) - nivolumab (NB), were explored through analytical techniques. Fourier-transform infrared (FTIR) spectroscopy demonstrated the structural transformation of peptides from α-helical to β-sheet formations, aligning with amyloid fibril aggregation. Ruthenium (III) complex synthesis was confirmed through distinct absorption peaks in FTIR analysis.

View Article and Find Full Text PDF

Fibrin is limited by some factors that limit its clinical applicability, such as rapid degradation, poor water solubility, and low oral bioavailability. However, they can be applied clinically when they are included in the development of biocompatible fibrin nanoparticles (F-NPs). In this present study, F-NPs were prepared using co-precipitation techniques and In vitro studies using oral cancer cell lines also proved the anticancer activity of F-NPs.

View Article and Find Full Text PDF

: Breast cancer results from tissue degradation caused by environmental and genetic factors that affect cells in the body. Matrix metalloproteinases, such as MMP-2 and MMP-9, are considered potential putative markers for tumor diagnosis in clinical validation due to their easy detection in body fluids. In addition, recent reports have suggested multiple roles for MMPs, rather than simply degeneration of the extracellular matrix, which comprises mobilizing growth factors and processing surface molecules.

View Article and Find Full Text PDF

Objective: In this study, the developed bioactive dental implant (BDI) from epoxy resin (ER), hydroxyapatite (HA), and curcumin nanoparticles (CUNPs).

Materials And Methods: The prepared BDI were characterized using their physicochemical, mechanical, antimicrobial, bioactive, and biocompatibility study. The scanning electron microscopy (SEM) morphology of the BDI was observed HA mineralized crystal layer after being immersed in the stimulated body fluids (SBF) solution.

View Article and Find Full Text PDF

In the present study, porous silk fibroin sponges (SFS) were prepared using silk fibroin (SF), fish bone collagen (FBC), and olive oil (OO). The study investigates the potential use of using this sponge as skin tissue regeneration. The sponge was characterized for its physicochemical, mechanical, antimicrobial, and drug release properties.

View Article and Find Full Text PDF

Rare earth elements (REE) have been extensively used in a variety of applications such as cell phones, electric vehicles, and lasers. REEs are also used as nanomaterials (NMs), which have distinctive features that make them suitable candidates for biomedical applications. In this review, we have highlighted the role of rare earth element nanomaterials (REE-NMs) in the growth of plants and physiology, including seed sprouting rate, shoot biomass, root biomass, and photosynthetic parameters.

View Article and Find Full Text PDF

Objectives In the present study, electrospun bone tissue membrane (EBTM) was prepared using polyvinylidene fluoride (PVDF), gelatin (gel), and demineralized bone matrix (DBM) by electrospinning method for its potential application in bone tissue regeneration. Materials and methods The prepared EBTM was evaluated using high-resolution scanning electron microscopy (HR-SEM), energy-dispersive X-ray spectroscopy (EDX; Silicon Drift 2017, USA), thermogravimetric analysis (TGA), and mechanical properties such as tensile strength (MPa), elongation at break (%), flexibility (%), and water absorption (%). In vitro bioactivity testing of EBTM using simulated body fluid (SBF) was performed after 14 days of immersion.

View Article and Find Full Text PDF

Objectives: The prevention of implant-associated infections is becoming increasingly clinically important in the field of dentistry. Extensive investigations into the development of innovative antibacterial materials that interact effectively to reinforce their functionality are currently being conducted in the biomedical sector. In the present study, a novel dental nano putty (D-nP) has been developed using demineralized bone matrix (DBM), calcium sulfate hemihydrate (CSH), curcumin nanoparticles (CU-NPs), and silver nanoparticles (AgNPs).

View Article and Find Full Text PDF

In the present work, bone implant materials (BIM) were produced, in sheet form which comprises epoxy resin (synthetic polymer) (ER), calcium carbonate (CaCO), and reduced graphene oxide (R-GO), by open mold method, for the possibility uses in bone tissue engineering. The developed BIM was analyzed for its physico-chemical, mechanical, bioactivity test, antimicrobial study, and biocompatibility. The BIM had excellent mechanical properties such as tensile strength (194.

View Article and Find Full Text PDF

In this work, a combination of cellulose nanofiber (CNF), coffee beans powder (CBP), and reduced graphene oxide (rGO) are used to design a nanowound dressing sheet (Nano-WDS), by vacuum pressure, for their sustained application in wound healing. Nano-WDS was analysed for its mechanical, antimicrobial, biocompatibility, etc., The Nano-WDS had favourable results of the tensile strength (12.

View Article and Find Full Text PDF

Biosensors are devices that quantify biologically significant information required for diverse applications, such as disease diagnosis, food safety, drug discovery and detection of environmental pollutants. Recent advancements in microfluidics, nanotechnology and electronics have led to the development of novel implantable and wearable biosensors for the expedient monitoring of diseases such as diabetes, glaucoma and cancer. Glaucoma is an ocular disease which ranks as the second leading cause for loss of vision.

View Article and Find Full Text PDF

Electrospinning is a versatile method which is used to synthesize nano/micro sized fibers under the influence of an electric field. Electrospun nanoscaffolds are one of the widely accepted platforms for cultivating soft and hard tissues as they create a perfect micro-environment for cell adhesion, proliferation and differentiation. Nanoscaffolds are widely used in the field of tissue engineering due to their versatility in aiding the growth of different types of cells and tissues for varied applications.

View Article and Find Full Text PDF

Human placenta is loaded with an enormous amount of endogenous growth factors, thereby making it a superior biomaterial for tissue regeneration. Sericin is a naturally occurring silk protein that is extensively used for biomedical applications. In the present work, sericin and human placenta-derived extracellular matrix were blended and fabricated in the form of scaffolds using the freeze-drying method for cutaneous wound treatment.

View Article and Find Full Text PDF

Purpose: In this work, a blend of collagen, physiologically clotted fibrin (PCF), and silver nanoparticles (AgNPs) is used to develop a nanobioscaffold (NBS), for their possible application in wound dressing materials.

Methods: The prepared NBS were evaluated using physicochemical, mechanical, and antibacterial properties. The NBS cell viability was demonstrated in a biocompatibility study using the human keratinocyte cell line (HaCaT).

View Article and Find Full Text PDF

In recent years, introducing electrospun airfilters to enhance the removal of PM and PM has received much interest. In this study, a novel poly-(vinyl) alcohol (PVA)/carbon nanoparticle (CNP)/tea leaf extract (TLE), functionalized nanofibrous air filter (FNA) was fabricated using an electrospinning method. Novelty of the unique work in the blending of CNP and TLE, first of its kind, for the preparation of FNA.

View Article and Find Full Text PDF

Application of N-heterocyclic carbene (NHC) palladium complexes has been successful for the modulation of C-C coupling reactions. For this purpose, a series of azolium salts (1a-f) including benzothiazolium, benzimidazolium, and imidazolium, bearing a CN-substituted benzyl moiety, and their (NHC)PdBr (2a-c) and PEPPSI-type palladium (3b-f) complexes have been systematically prepared to catalyse acylative Suzuki-Miyaura coupling reaction of acyl chlorides with arylboronic acids to form benzophenone derivatives in the presence of potassium carbonate as a base and to catalyse the traditional Suzuki-Miyaura coupling reaction of bromobenzene with arylboronic acids to form biaryls. All the synthesized compounds were fully characterized by Fourier Transform Infrared (FTIR), and H and C NMR spectroscopies.

View Article and Find Full Text PDF

It is possible to reveal the potential of water-insoluble drugs by increasing their solubility in water with some nanotechnology techniques. Nanosuspension technology can solve this problem by increasing the water solubility and as well as bioavailability of these drugs. The present work is pointed at the evaluation of nanosuspension of curcumin, a poorly water-soluble drug.

View Article and Find Full Text PDF

Purpose: In this study, a blend of synthetic polymer (poly(vinyl) alcohol), natural polymer (collagen type I from fish bone), and graphene oxide nanoparticles is used to fabricate a composite nanofibrous scaffold, by electrospinning, for their potential application in accelerated wound healing.

Methods: The scaffold was characterized for its physicochemical and mechanical properties. In vitro studies were carried out using human keratinocyte cell line (HaCaT) which proved the biocompatibility of the scaffold.

View Article and Find Full Text PDF

Purpose: Bluefin Trevally (Caranx melampygus) fish is mainly used for fillet production, the bones of which are discarded as a major solid waste in the fish food processing industry. In the present study, novel collagen films were prepared using the bones of Bluefin Trevally (BT). The study investigates the potential of using this collagen film as a wound dressing material.

View Article and Find Full Text PDF

The present study efforts at fabricating chitosan-fibrin composite (CF) scaffolds impregnated with quercetin for wound dressing application and aims at investigating their physicochemical properties. CF scaffolds were prepared by mixing acidic solution of chitosan with an alkaline solution of fibrin, to which quercetin (Q) was added, homogenized and lyophilized obtain Q-CF scaffold. FTIR spectra were used to determine the interactions between the functional groups of quercetin and CF scaffolds.

View Article and Find Full Text PDF

Developing biomaterials having wound healing properties within the search of a common man is the need of hour, particularly in developing and third world countries. Keeping this objective in view we have developed a wound dressing material, in sheet form, containing fish scale collagen (FSC) and physiologically clotted fibrin (PCF), both are by products of aqua food and meat industries respectively. To impart antimicrobial properties to the composite sheet, it was incorporated with Macrotyloma uniflorum plant extract (MPE).

View Article and Find Full Text PDF