Background: Improved tools are required to detect bacterial infection in children with fever without source (FWS), especially when younger than 3 years old. The aim of the present study was to investigate the diagnostic accuracy of a host signature combining for the first time two viral-induced biomarkers, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and interferon γ-induced protein-10 (IP-10), with a bacterial-induced one, C-reactive protein (CRP), to reliably predict bacterial infection in children with fever without source (FWS) and to compare its performance to routine individual biomarkers (CRP, procalcitonin (PCT), white blood cell and absolute neutrophil counts, TRAIL, and IP-10) and to the Labscore.
Methods: This was a prospective diagnostic accuracy study conducted in a single tertiary center in children aged less than 3 years old presenting with FWS.
Objectives: Previous studies applying Sepsis-3 criteria to children were based on retrospective analyses of PICU cohorts. We aimed to compare organ dysfunction criteria in children with blood culture-proven sepsis, including emergency department, PICU, and ward patients, and to assess relevance of organ dysfunctions for mortality prediction.
Design: We have carried out a nonprespecified, secondary analysis of a prospective dataset collected from September 2011 to December 2015.
Objectives: To evaluate the potential associations between fever without a source (FWS) in children and detection of human enterovirus (HEV), human parechovirus (HPeV), adenovirus (AdV) and human herpesvirus type 6 (HHV-6) in the plasma; and to assess whether the detection of viruses in the plasma is associated with a reduced risk of serious bacterial infection (SBI) and antibiotic use.
Design And Setting: Between November 2015 and December 2017, this prospective, single-centre, diagnostic study tested the plasma of children <3 years old with FWS. Real-time (reverse-transcription) PCR for HEV, HPeV, AdV and HHV-6 was used in addition to the standardised institutional work-up.