Skyrmions are topological structures characterized by a winding vectorial configuration that provides a quantized topological charge. In magnetic materials, skyrmions are localized spin textures that exhibit unique stability and mobility properties, making them highly relevant to the burgeoning field of spintronics. In optics, these structures open new frontiers in manipulating and controlling light at the nanoscale.
View Article and Find Full Text PDFLight-matter interactions are frequently perceived as predominantly influenced by the electric field, with the magnetic component of light often overlooked. Nonetheless, the magnetic field plays a pivotal role in various optical processes, including chiral light-matter interactions, photon-avalanching, and forbidden photochemistry, underscoring the significance of manipulating magnetic processes in optical phenomena. Here, we explore the ability to control the magnetic light and matter interactions at the nanoscale.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2022
Reaching reproducible strong coupling between a quantum emitter and a plasmonic resonator at room temperature, while maintaining high emission yields, would make quantum information processing with light possible outside of cryogenic conditions. We theoretically propose to exploit the high local curvatures at the tips of plasmonic nanocubes to reach Purcell factors of >10 at visible frequencies, rendering single-molecule strong coupling more easily accessible than with the faceted spherical nanoparticles used in recent experimental demonstrations. In the case of gold nanocube dimers, we highlight a trade-off between coupling strength and emission yield that depends on the nanocube size.
View Article and Find Full Text PDFHybrid nanostructures, in which a known number of quantum emitters are strongly coupled to a plasmonic resonator, should feature optical properties at room temperature such as few-photon nonlinearities or coherent superradiant emission. We demonstrate here that this coupling regime can only be reached with dimers of gold nanoparticles in stringent experimental conditions, when the interparticle spacing falls below 2 nm. Using a short transverse DNA double-strand, we introduce five dye molecules in the gap between two 40 nm gold particles and actively decrease its length down to sub-2 nm values by screening electrostatic repulsion between the particles at high ionic strengths.
View Article and Find Full Text PDFWe demonstrate the local optimization of nonlinear luminescence from disordered gold metasurfaces by shaping the phase of femtosecond excitation. This process is enabled by the far-field wavefront control of plasmonic modes delocalized over the sample surface, leading to a coherent enhancement of subwavelength electric fields. In practice, the increase in nonlinear luminescence is strongly sensitive to both the nanometer-scale morphology and the level of structural complexity of the gold metasurface.
View Article and Find Full Text PDFDNA is a powerful tool to assemble gold nanoparticles into discrete structures with tunable plasmonic properties for photonic or biomedical applications. Because of their photothermal properties or their use in biological media, these nanostructures can experience drastic modifications of the local temperature that can affect their morphology and, therefore, their optical responses. Using single-nanostructure spectroscopy, we demonstrate that, even with a fully stable DNA linker, gold particle dimers can undergo substantial conformational changes at temperatures larger than 50 °C and aggregate irreversibly.
View Article and Find Full Text PDFCorrection for 'Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting' by Meher Naffouti, et al., Nanoscale, 2016, 8, 2844-2849.
View Article and Find Full Text PDFMinimizing the luminescence lifetime while maintaining a high emission quantum yield is paramount in optimizing the excitation cross-section, radiative decay rate, and brightness of quantum solid-state light sources, particularly at room temperature, where nonradiative processes can dominate. We demonstrate here that DNA-templated 60 and 80 nm diameter gold nanoparticle dimers, featuring one fluorescent molecule, provide single-photon emission with lifetimes that can fall below 10 ps and typical quantum yields in a 45-70% range. Since these colloidal nanostructures are obtained as a purified aqueous suspension, fluorescence spectroscopy can be performed on both fixed and freely diffusing nanostructures to quantitatively estimate the distributions of decay rate and fluorescence intensity enhancements.
View Article and Find Full Text PDFWe report the fabrication of Si-based dielectric Mie resonators via a low cost process based on solid-state dewetting of ultra-thin amorphous Si on SiO2. We investigate the dewetting dynamics of a few nanometer sized layers annealed at high temperature to form submicrometric Si-particles. Morphological and structural characterization reveal the polycrystalline nature of the semiconductor matrix as well as rather irregular morphologies of the dewetted islands.
View Article and Find Full Text PDFDNA has been extensively used as a versatile template to assemble inorganic nanoparticles into complex architectures; thanks to its programmability, stability, and long persistence length. But the geometry of self-assembled nanostructures depends on a complex combination of attractive and repulsive forces that can override the shape of a molecular scaffold. In this report, an approach to increase the morphological stability of DNA-templated gold nanoparticle (AuNP) groupings against electrostatic interactions is demonstrated by introducing hydrophobicity on the particle surface.
View Article and Find Full Text PDFThe nanometer-scale sensitivity of electromagnetic plasmon coupling allows the translation of minute morphological changes in nanostructures into macroscopic optical signals. We demonstrate here a widefield spectral analysis of 40 nm diameter gold nanoparticle (AuNP) dimers, linked by a short DNA double strand, using a low-cost color CCD camera and allowing a quantitative estimation of interparticle distances in a 3-20 nm range. This analysis can be extended to lower spacings and a parallel monitoring of dimer orientations by performing a simple polarization analysis.
View Article and Find Full Text PDFSubwavelength-sized dielectric Mie resonators have recently emerged as a promising photonic platform, as they combine the advantages of dielectric microstructures and metallic nanoparticles supporting surface plasmon polaritons. Here, we report the capabilities of a dewetting-based process, independent of the sample size, to fabricate Si-based resonators over large scales starting from commercial silicon-on-insulator (SOI) substrates. Spontaneous dewetting is shown to allow the production of monocrystalline Mie-resonators that feature two resonant modes in the visible spectrum, as observed in confocal scattering spectroscopy.
View Article and Find Full Text PDFPlasmon-based optical antennas featuring a nanometer-sized gap can enhance the photophysical properties of solid-state quantum emitters by several orders of magnitude at room temperature. However, controlling the position and orientation of an isolated emitter in a metallic resonator, at the nanometer scale, has only been achieved in scanning probe geometries. Using radially polarized cylindrical vector beams and DNA-assembled gold nanoparticle dimers, we demonstrate the reproducible interaction of single dye molecules with the bright longitudinal mode of a plasmonic cavity, achieving decay rate enhancements of 2 orders of magnitude.
View Article and Find Full Text PDFWe produce gold nanoparticle dimers with a surface-to-surface distance that varies reversibly by a factor of 3 when hybridizing or removing a single target DNA strand. The dimers are built on one DNA template that features a stem-loop enabling the interparticle distance change. Using electrophoresis, we reach 90% sample purities and demonstrate that this chemical process is reversible in solution at room temperature for a low molar excess of the target DNA strand.
View Article and Find Full Text PDFAn aureate dye: Confined electromagnetic fields in DNA-templated gold nanoparticle dimers were tuned to engineer the fluorescence properties of organic dyes in water (see picture). Purified suspensions of hybrid metal-organic chromophores featured unprecedented photophysical properties, such as a short lifetime and low quantum yield but high brightness.
View Article and Find Full Text PDFA photon interacts efficiently with an atom when its frequency corresponds exactly to the energy between two eigenstates. But at the nanoscale, homogeneous and inhomogeneous broadenings strongly hinder the ability of solid-state systems to absorb, scatter or emit light. By compensating the impedance mismatch between visible wavelengths and nanometre-sized objects, optical antennas can enhance light-matter interactions over a broad frequency range.
View Article and Find Full Text PDFWe demonstrate that symmetric or asymmetric gold nanoparticle dimers with substantial scattering cross sections and plasmon coupling can be produced with a perfectly controlled chemical environment and a high purity using a single DNA linker as short as 7 nm. A statistical analysis of the optical properties and morphology of single dimers is performed using darkfield and cryo-electron microscopies. These results, correlated to Mie theory calculations, indicate that the particle dimers are stretched in water by electrostatic interactions.
View Article and Find Full Text PDFWe demonstrate that the reflecting properties of a single particle nanoantenna can be extremely sensitive to its distance from a quantum emitter at frequencies lower than the plasmon resonance. The phenomenon is shown to arise from rapid phase variations of the emitter field at short distances associated with a phase of the antenna particle polarizability lower than π/4.
View Article and Find Full Text PDFThe controlled and reproducible synthesis of closely spaced noble metal nanoparticle groupings is an essential step toward the rational design of nanostructures for surface enhanced Raman scattering with single-molecule sensitivity. In this communication, we demonstrate the facile synthesis of 5, 8, and 18 nm gold particle groupings on a well-defined DNA template by hybridizing monoconjugated gold-DNA building blocks. The obtained nanometer interparticle gaps should yield local intensity enhancements up to 4 orders of magnitude as estimated by Generalized Mie Theory.
View Article and Find Full Text PDFFollowing on the recent experimental demonstration of a discrepancy between the nonlinear optical (NLO) behavior of several pi-conjugated chromophores and their assumed octupolar symmetry, the authors investigate how geometrical distortions influence the NLO response of multipolar push-pull molecules. Their analytical model is set on a basis of valence-bond and charge-transfer states to estimate the hyperpolarizability of organic and metallo-organic chromophores using the lowest possible number of variables. Since symmetry breakdown changes the definition of the molecular Cartesian framework, tensorial spherical coordinates are implemented.
View Article and Find Full Text PDFWe demonstrate spatially resolved polarization encoding of nonlinear information by all-optical poling of photoisomerizable and nonlinear molecules in polymer films. The second harmonic generation (SHG)polarization responses of the photo-induced patterns are imaged by a nonlinear microscope with 2 microm lateral resolution. The strong SHG dependence to the poling fields polarizations is applied to information encoding, with a potential in high density optical data storage.
View Article and Find Full Text PDFA new type of 4,4'-bis(styryl)-2,2'-bipyridine functionalized by a dialkylamino-azobenzene group has been prepared. This ligand has allowed the preparation of photoisomerizable octupolar tris(bipyridyl)zinc(II) complexes and the corresponding star-shaped polymer by atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA). The photoisomerization properties of such new metallo-chromophores have been studied.
View Article and Find Full Text PDFPhotoinduced orientational distributions are implemented with one- and two-photon absorption interference in polymer films containing chromophores that exhibit luminescent and nonlinear properties. The odd- and even-order parameters of the final distribution are probed by simultaneous measurement of second-harmonic generation (SHG) and two-photon fluorescence (TPF). We show the possibility of engineering local SHG and TPF anisotropies by controlling the polarization states and intensities of the writing optical fields.
View Article and Find Full Text PDF