Standard oral rapamycin (that is, Rapamune) administration is plagued by poor bioavailability and broad biodistribution. Thus, this pleotropic mammalian target of rapamycin (mTOR) inhibitor has a narrow therapeutic window and numerous side effects and provides inadequate protection to transplanted cells and tissues. Furthermore, the hydrophobicity of rapamycin limits its use in parenteral formulations.
View Article and Find Full Text PDFUpon exposure to blood, a corona of proteins adsorbs to nanocarrier surfaces to confer a biological identity that interfaces with the immune system. While the nanocarrier surface chemistry has long been the focus of protein corona formation, the influence of nanostructure has remained unclear despite established influences on biodistribution, clearance, and inflammation. Here, combinations of nanocarrier morphology and surface chemistry are engineered to i) achieve compositionally distinct protein coatings in human blood and ii) control protein-mediated interactions with the immune system.
View Article and Find Full Text PDFCheckpoint blocking antibodies that interfere in the PD-1/PD-L1 axis provide effective cancer immunotherapy for tumors that are immune inflamed or induced to become "hot". It has also been demonstrated that a small molecule inhibitor of the signaling hub kinase GSK3 can interfere in the PD-1/PD-L1 axis in T-cells by suppressing PD-1 expression. This provides an alternative approach to intervening in the PD-1/PD-L1 axis to provide cancer immunotherapy.
View Article and Find Full Text PDFThe targeting of natural tolerogenic liver sinusoidal endothelial cells (LSEC) by nanoparticles (NPs), decorated with a stabilin receptor ligand, is capable of generating regulatory T-cells (Tregs), which can suppress antigen-specific immune responses, including to ovalbumin (OVA), a possible food allergen. In this regard, we have previously demonstrated that OVA-encapsulating poly(lactic--glycolic acid) (PLGA) nanoparticles eliminate allergic airway inflammation in OVA-sensitized mice, prophylactically and therapeutically. A competing approach is a nanocarrier platform that incorporates pharmaceutical agents interfering in mTOR (rapamycin) or NF-κB (curcumin) pathways, with the ability to induce a tolerogenic state in nontargeted antigen-presenting cells system-wide.
View Article and Find Full Text PDFNanoscale Horiz
March 2019
Self-assembled soft nanocarriers that are capable of simultaneous encapsulation of both lipophilic and water soluble payloads have significantly enhanced controlled delivery applications in biomedicine. These nanoarchitectures, such as liposomes, polymersomes and cubosomes, are primarily composed of either amphiphilic polymers or lipids, with the polymeric variants generally possessing greater stability and control over biodistribution and bioresponsive release. Polymersomes have long demonstrated such advantages over their lipid analogs, liposomes, but only recently have bicontinuous nanospheres emerged as a polymeric cubic phase alternative to lipid cubosomes.
View Article and Find Full Text PDFBicontinuous nanospheres (BCNs) are underutilized self-assembled nanostructures capable of simultaneous delivery of both hydrophilic and hydrophobic payloads. Here, we demonstrate that BCNs assembled from poly(ethylene glycol)-block-poly(propylene sulfide) (PEG-b-PPS), an oxidation-sensitive copolymer, are stably retained within cell lysosomes following endocytosis, resisting degradation and payload release for days until externally triggered. The oxygen scavenging properties and enhanced stability of the bicontinuous PEG-b-PPS nanoarchitecture significantly protected cells from typically cytotoxic application of pro-apoptotic photo-oxidizer pheophorbide A and chemotherapeutic camptothecin.
View Article and Find Full Text PDFAdv Funct Mater
October 2019
The principle cause of cardiovascular disease (CVD) is atherosclerosis, a chronic inflammatory condition characterized by immunologically complex fatty lesions within the intima of arterial vessel walls. Dendritic cells (DCs) are key regulators of atherosclerotic inflammation, with mature DCs generating pro-inflammatory signals within vascular lesions and tolerogenic DCs eliciting atheroprotective cytokine profiles and regulatory T cell (Treg) activation. Here, we engineered the surface chemistry and morphology of synthetic nanocarriers composed of poly(ethylene glycol)-b-poly(propylene sulfide) copolymers to selectively target and modulate DCs by transporting the anti-inflammatory agent 1, 25-Dihydroxyvitamin D3 (aVD) and ApoB-100 derived antigenic peptide P210.
View Article and Find Full Text PDFB-cell lymphoma cells depend upon cholesterol to maintain pro-proliferation and pro-survival signaling the B-cell receptor. Targeted cholesterol depletion of lymphoma cells is an attractive therapeutic strategy. We report here high-density lipoprotein mimicking magnetic nanostructures (HDL-MNSs) that can bind to the high-affinity HDL receptor, scavenger receptor type B1 (SR-B1), and interfere with cholesterol flux mechanisms in SR-B1 receptor positive lymphoma cells, causing cellular cholesterol depletion.
View Article and Find Full Text PDFBiomater Sci
January 2019
In this work, the hydrophobic small molecule NF-κB inhibitor celastrol was loaded into poly(ethylene glycol)-b-poly(propylene sulfide) (PEG-b-PPS) micelles. PEG-b-PPS micelles demonstrated high loading efficiency, low polydispersity, and no morphological changes upon loading with celastrol. Encapsulation of celastrol within these nanocarriers significantly reduced cytotoxicity compared to free celastrol, while simultaneously expanding the lower concentration range for effective inhibition of NF-κB signaling by nearly 50 000-fold.
View Article and Find Full Text PDFBicontinuous nanospheres (BCNs) are polymeric analogs to lipid cubosomes, possessing cubic liquid crystalline phases with high internal surface area, aqueous channels for loading hydrophilic molecules, and high hydrophobic volume for lipophilic payloads. Primarily due to difficulties in scalable and consistent fabrication, neither controlled delivery of payloads via BCNs nor their organ or cellular biodistributions following in vivo administration have been demonstrated or characterized. We have recently validated flash nanoprecipitation as a rapid method of assembling uniform monodisperse 200-300 nm diameter BCNs from poly(ethylene glycol) -b-poly(propylene sulfide) (PEG -b-PPS) co-polymers.
View Article and Find Full Text PDFPolymeric bicontinuous nanospheres (BCNs) that are analogous to lipid cubosomes possess high internal surface area and porosity that can accommodate the loading of a wide range of hydrophobic and hydrophilic molecules for diverse applications. Self-assembly of BCNs has been reported using complex amphiphilic polymeric structures, with co-solvent dispersion being the only documented method of formation. Here, we report a simple amphiphilic diblock copolymer, poly(ethylene glycol)-block-poly(propylene sulfide) (PEG-bl-PPS), to form BCNs using the rapid and scalable technique of flash nanoprecipitation (FNP).
View Article and Find Full Text PDFAtherosclerosis, a leading cause of heart disease, results from chronic vascular inflammation that is driven by diverse immune cell populations. Nanomaterials may function as powerful platforms for diagnostic imaging and controlled delivery of therapeutics to inflammatory cells in atherosclerosis, but efficacy is limited by nonspecific uptake by cells of the mononuclear phagocytes system (MPS). MPS cells located in the liver, spleen, blood, lymph nodes, and kidney remove from circulation the vast majority of intravenously administered nanomaterials regardless of surface functionalization or conjugation of targeting ligands.
View Article and Find Full Text PDF