is a major human pathogen, mostly infecting people with pre-existing lung conditions, such as cystic fibrosis. The production of glycopeptidolipids (GPL) is a major determinant of virulence of this bacterium, with clinical isolates that lack GPL generally exhibiting more aggressive clinical behavior. The current paradigm is that GPL production is abolished via irreversible, spontaneous mutations taking place as part of in-host evolution.
View Article and Find Full Text PDFis a major human pathogen, mostly infecting people with pre-existing lung conditions such as cystic fibrosis. The production of glycopeptidolipids (GPL) is a major determinant of virulence of this bacterium, with clinical isolates that lack GPL generally exhibiting more aggressive clinical behavior. The current paradigm is that GPL production is abolished via irreversible, spontaneous mutations taking place as part of in-host evolution.
View Article and Find Full Text PDFUnlabelled: (Mtb) exhibits an impressive ability to adapt to rapidly changing environments, despite its genome's apparent stability. Recently, phase variation through indel formation in homopolymeric tracts (HT) has emerged as a potentially important mechanism promoting adaptation in Mtb. This study examines the impact of common phase variants associated with the ESX-1 type VII secretion system, focusing on a highly variable HT upstream of the ESX-1 regulatory factor, .
View Article and Find Full Text PDFThe ESX-1 secretion system is critical for the virulence of as well as for conjugation in the saprophytic model . EsxB (CFP-10) and EsxA (ESAT-6) are secreted effectors required for the function of ESX-1 systems. While some transcription factors regulating the expression of and have been identified, little work has addressed their promoter structures or other determinants of their expression.
View Article and Find Full Text PDFNAR Genom Bioinform
September 2024
Antimicrob Agents Chemother
October 2024
In view of the urgent need for new antibiotics to treat human infections caused by multidrug-resistant pathogens, drug repurposing is gaining strength due to the relatively low research costs and shorter clinical trials. Such is the case of artemisinin, an antimalarial drug that has recently been shown to display activity against (Mtb), the causative agent of tuberculosis. To gain insight into how Mtb is affected by artemisinin, we used RNAseq to assess the impact of artemisinin on gene expression profiles, revealing the induction of several efflux pumps and the KstR2 regulon.
View Article and Find Full Text PDFEthnopharmacological Relevance: African wormwood (Artemisia afra Jacq. ex Willd.) has been used traditionally in southern Africa to treat illnesses causing fever and was recently shown to possess anti-tuberculosis activity.
View Article and Find Full Text PDFbioRxiv
October 2023
Tuberculosis, caused by (Mtb), is a deadly and debilitating disease globally affecting millions annually. Emerging drug-resistant Mtb strains endanger the efficacy of the current combination therapies employed to treat tuberculosis; therefore, there is an urgent need to develop novel drugs to combat this disease. is used traditionally in southern Africa to treat malaria and recently has shown anti tuberculosis activity.
View Article and Find Full Text PDFA fluorescence turn-on probe, an azide-masked and trehalose-derivatized carbazole (), was developed to image mycobacteria. The fluorescence turn-on is achieved by photoactivation of the azide, which generates a fluorescent product through an efficient intramolecular C-H insertion reaction. The probe is highly specific for mycobacteria and could image mycobacteria in the presence of other Gram-positive and Gram-negative bacteria.
View Article and Find Full Text PDF(Mtb) is a deadly pathogen and causative agent of human tuberculosis, causing ~1.5 million deaths every year. The increasing drug resistance of this pathogen necessitates novel and improved treatment strategies.
View Article and Find Full Text PDFUndergraduate instructional biology laboratories are typically taught within two paradigms. Some labs focus on protocols and techniques delivered in "cookbook" format with defined experimental outcomes. There is increasing momentum to alternatively employ student-driven, open-ended, and discovery-based strategies, often course-based undergraduate research experiences (CUREs) using crowd-sourcing initiatives.
View Article and Find Full Text PDFDespite the existence of well-characterized, canonical mutations that confer high-level drug resistance to Mycobacterium tuberculosis (Mtb), there is evidence that drug resistance mechanisms are more complex than simple acquisition of such mutations. Recent studies have shown that Mtb can acquire non-canonical resistance-associated mutations that confer survival advantages in the presence of certain drugs, likely acting as stepping-stones for acquisition of high-level resistance. Rv2752c/rnj, encoding RNase J, is disproportionately mutated in drug-resistant clinical Mtb isolates.
View Article and Find Full Text PDFBacteria have a remarkable ability to sense environmental changes, swiftly regulating their transcriptional and posttranscriptional machinery as a response. Under conditions that cause growth to slow or stop, bacteria typically stabilize their transcriptomes in what has been shown to be a conserved stress response. In recent years, diverse studies have elucidated many of the mechanisms underlying mRNA degradation, yet an understanding of the regulation of mRNA degradation under stress conditions remains elusive.
View Article and Find Full Text PDFObjective: Restriction-Modification (R-M) systems are ubiquitous in bacteria and were considered for years as rudimentary immune systems that protect bacterial cells from foreign DNA. Currently, these R-M systems are recognized as important players in global gene expression and other cellular processes such us virulence and evolution of genomes. Here, we report the role of the unique DNA methyltransferase in Mycobacterium smegmatis, which shows a moderate degree of sequence similarity to MamA, a previously characterized methyltransferase that affects gene expression in Mycobacterium tuberculosis and is important for survival under hypoxic conditions.
View Article and Find Full Text PDFEthnopharmacological Relevance: Emergence of drug-resistant and multidrug-resistant Mycobacterium tuberculosis (Mtb) strains is a major barrier to tuberculosis (TB) eradication, as it leads to longer treatment regimens and in many cases treatment failure. Thus, there is an urgent need to explore new TB drugs and combinations, in order to shorten TB treatment and improve outcomes. Here, we evaluated the potential of two Asian and African traditional medicinal plants, Artemisia annua, a natural source of artemisinin (AN), and Artemisia afra, as sources of novel antitubercular agents.
View Article and Find Full Text PDFThe success of as a human pathogen is due in part to its ability to survive stress conditions, such as hypoxia or nutrient deprivation, by entering nongrowing states. In these low-metabolism states, can tolerate antibiotics and develop genetically encoded antibiotic resistance, making its metabolic adaptation to stress crucial for survival. Numerous bacteria, including , have been shown to reduce their rates of mRNA degradation under growth limitation and stress.
View Article and Find Full Text PDFFront Microbiol
March 2019
The ability of to infect, proliferate, and survive during long periods in the human lungs largely depends on the rigorous control of gene expression. Transcriptome-wide analyses are key to understanding gene regulation on a global scale. Here, we combine 5'-end-directed libraries with RNAseq expression libraries to gain insight into the transcriptome organization and post-transcriptional mRNA cleavage landscape in mycobacteria during log phase growth and under hypoxia, a physiologically relevant stress condition.
View Article and Find Full Text PDFRNA-seq technologies have provided significant insight into the transcription networks of mycobacteria. However, such studies provide no definitive information on the translational landscape. Here, we use a combination of high-throughput transcriptome and proteome-profiling approaches to more rigorously understand protein expression in two mycobacterial species.
View Article and Find Full Text PDFThe bacterial envelope integrates essential stress-sensing and adaptive functions; thus, envelope-preserving functions are important for survival. In Gram-negative bacteria, envelope integrity during stress is maintained by the multi-gene Psp response. Mycobacterium tuberculosis was thought to lack the Psp system since it encodes only pspA and no other psp ortholog.
View Article and Find Full Text PDFNext-generation sequencing technologies facilitate the analysis of multiple important properties of the transcriptome in addition to gene expression levels. Here we describe a method for mapping RNA 5' ends in Mycobacterium tuberculosis, which allows the determination of transcriptional start sites (TSSs), comparative analysis of promoter usage under different conditions, and mapping of endoribonucleolytic processing sites. We describe in detail the procedures for constructing RNA sequencing libraries appropriate for RNA 5' end mapping using an Illumina sequencing platform.
View Article and Find Full Text PDFDNA methylation regulates gene expression in many organisms. In eukaryotes, DNA methylation is associated with gene repression, while it exerts both activating and repressive effects in the Proteobacteria through largely locus-specific mechanisms. Here, we identify a critical DNA methyltransferase in M.
View Article and Find Full Text PDF