Publications by authors named "Saxton D Fisher"

Calcium mineralization in biological and geological systems is often regulated by (macro)molecules enriched with anionic functional moieties. Relatively few studies have examined the effects of phosphate-based modifiers that are integral in calcification underlying human bone formation and pathological diseases. Here we mimic posttranslational phosphorylated moieties of a biologically-active inhibitor protein and demonstrate that polyphosphates and phosphonates suppress calcium oxalate nucleation, tailor solvate crystal structure, and irreversibly inhibit crystal growth in ways that significantly deviate from commonly investigated carboxylate-rich modulators of biomineralization.

View Article and Find Full Text PDF

Distal appendages are ninefold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for the formation of the primary cilium, by regulating at least four critical steps: preciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood.

View Article and Find Full Text PDF

Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood.

View Article and Find Full Text PDF