Publications by authors named "Sarshad Koderi Valappil"

We use a microfluidic ecology which generates non-uniform phage concentration gradients and micro-ecological niches to reveal the importance of time, spatial population structure and collective population dynamics in the de evolution of T4r bacteriophage resistant motile . An insensitive bacterial population against T4r phage occurs within 20 hours in small interconnected population niches created by a gradient of phage virions, driven by evolution in transient biofilm patches. Sequencing of the resistant bacteria reveals mutations at the receptor site of bacteriophage T4r as expected but also in genes associated with biofilm formation and surface adhesion, supporting the hypothesis that evolution within transient biofilms drives phage resistance.

View Article and Find Full Text PDF

The increasing ineffectiveness of traditional antibiotics and the rise of multidrug resistant (MDR) bacteria have necessitated the revival of bacteriophage (phage) therapy. However, bacteria might also evolve resistance against phages. Phages and their bacterial hosts coexist in nature, resulting in a continuous coevolutionary competition for survival.

View Article and Find Full Text PDF

pv. oryzae is the causative agent of bacterial leaf blight of rice. The application of bacteriophages may provide an effective tool against this bacterium.

View Article and Find Full Text PDF

Porcine circovirus 3 (PCV3) infection has been reported in piglets and sows with porcine dermatitis and nephropathy syndrome, reproductive failure, and cardiac and multisystemic inflammation. Few studies linked PCV3 infection to increased incidence of abortion and weak-born piglets. This is the first report of a detection of PCV3 Hungarian strain in several organs of aborted and weak-born piglets, including the thymus, lymph node, placenta, spleen, kidney and the liver.

View Article and Find Full Text PDF