Publications by authors named "Sarra Merzouk"

The murine embryonic-trophoblast-extra-embryonic endoderm (ETX) model is an integrated stem cell-based model to study early postimplantation development. It is based on the self-assembly potential of embryonic, trophoblast, and hypoblast/primitive/visceral endoderm-type stem cell lines (ESC, TSC, and XEN, respectively) to arrange into postimplantation egg cylinder-like embryoids. Here, we provide an optimized method for reliable and efficient generation of ETX embryoids that develop into late gastrulation in static culture conditions.

View Article and Find Full Text PDF

Organs age differently, causing wide heterogeneity in multimorbidity, but underlying mechanisms are largely elusive. To investigate the basis of organ-specific ageing, we utilized progeroid repair-deficient Ercc1 mouse mutants and systematically compared at the tissue, stem cell and organoid level two organs representing ageing extremes. Ercc1 intestine shows hardly any accelerated ageing.

View Article and Find Full Text PDF

At initiation of X chromosome inactivation (XCI), Xist is monoallelically upregulated from the future inactive X (Xi) chromosome, overcoming repression by its antisense transcript Tsix. Xist recruits various chromatin remodelers, amongst them SPEN, which are involved in silencing of X-linked genes in cis and establishment of the Xi. Here, we show that SPEN plays an important role in initiation of XCI.

View Article and Find Full Text PDF

The 11 zinc finger (ZF) protein CTCF regulates topologically associating domain formation and transcription through selective binding to thousands of genomic sites. Here, we replaced endogenous CTCF in mouse embryonic stem cells with green-fluorescent-protein-tagged wild-type or mutant proteins lacking individual ZFs to identify additional determinants of CTCF positioning and function. While ZF1 and ZF8-ZF11 are not essential for cell survival, ZF8 deletion strikingly increases the DNA binding off-rate of mutant CTCF, resulting in reduced CTCF chromatin residence time.

View Article and Find Full Text PDF

Homologous recombination (HR) and Fanconi Anemia (FA) pathway proteins in addition to their DNA repair functions, limit nuclease-mediated processing of stalled replication forks. However, the mechanism by which replication fork degradation results in genome instability is poorly understood. Here, we identify RIF1, a non-homologous end joining (NHEJ) factor, to be enriched at stalled replication forks.

View Article and Find Full Text PDF
Article Synopsis
  • X chromosome inactivation (XCI) is a crucial process in mammals that silences one of the X chromosomes in females, using various mechanisms and models to study it more effectively.
  • This study developed a new protocol for differentiating rat embryonic stem cells (ESCs) to investigate XCI, allowing researchers to bypass the limitations of using mouse ESCs.
  • Findings reveal that differentiating rat ESCs show appropriate gene regulation and that RNF12 is key for activating Xist, suggesting it plays a significant role in initiating XCI in rats, paving the way for further research in this area.
View Article and Find Full Text PDF

Bloom syndrome is a cancer predisposition disorder caused by mutations in the BLM helicase gene. Cells from persons with Bloom syndrome exhibit striking genomic instability characterized by excessive sister chromatid exchange events (SCEs). We applied single-cell DNA template strand sequencing (Strand-seq) to map the genomic locations of SCEs.

View Article and Find Full Text PDF

Background: Silencing of the paternal X chromosome (Xp), a phenomenon known as imprinted X-chromosome inactivation (I-XCI), characterises, amongst mouse extraembryonic lineages, the primitive endoderm and the extraembryonic endoderm (XEN) stem cells derived from it.

Results: Using a combination of chromatin immunoprecipitation characterisation of histone modifications and single-cell expression studies, we show that whilst the Xp in XEN cells, like the inactive X chromosome in other cell types, globally accumulates the repressive histone mark H3K27me3, a large number of Xp genes locally lack H3K27me3 and escape from I-XCI. In most cases this escape is specific to the XEN cell lineage.

View Article and Find Full Text PDF

Random epigenetic silencing of the X-chromosome in somatic tissues of female mammals equalizes the dosage of X-linked genes between the sexes. Unlike this form of X-inactivation that is essentially irreversible, the imprinted inactivation of the paternal X, which characterizes mouse extra-embryonic tissues, appears highly unstable in the trophoblast giant cells of the placenta. Here, we wished to determine whether such instability is already present in placental progenitor cells prior to differentiation toward lineage-specific cell types.

View Article and Find Full Text PDF