Publications by authors named "Saravanan Anbalagan"

Epigenetic modulation has emerged as a central strategy that can change the fate of tumour cells to offer more rational and precise approaches by modulating reversible changes in chromatin structure, regulating gene expression without altering DNA sequence. Many reports have indicated the contributions of abnormal epigenetic alterations, particularly DNA methylation and histone modification patterns, as well as their association with non-coding RNA interactions during cancer emergence, development or resistance to standard therapies. Ongoing studies on various inhibitors also demonstrate encouraging preclinical results and potent inhibitory activity.

View Article and Find Full Text PDF

Genomic medicine is revolutionizing genetic disease diagnosis and therapy; has a major impact on clinical practice, particularly in diagnosis and treatment. In addition, next-generation sequencing (NGS) has transformed diagnostics. These advances have made genome profiling costeffective and fast, helping us find pathogenic variations that cause a variety of genetic illnesses.

View Article and Find Full Text PDF

Emerging cancer immunotherapy methods, notably cytokine-based ones that modify immune systems' inflammatory reactions to tumor cells, may help slow gastric cancer progression. Cytokines, tiny signaling proteins that communicate between immune cells, may help or hinder cancer growth. Pro-inflammatory cytokines encourage tumor development, whereas antitumor ones help the host reject cancer cells.

View Article and Find Full Text PDF

The present study included the environmentally friendly production of stable nickel nanoparticles (NiO NPs) using lemon and tomato, followed by their analysis and evaluation for their antibacterial properties against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Bacillus cereus. The Nickel oxide nanoparticles produced exhibited their maximum absorption at 276 nm in the UV-vis spectrum. The image captured FESEM revealed smooth nanofibers with an average diameter of around 259 ± 3.

View Article and Find Full Text PDF
Article Synopsis
  • Stem cell therapy shows great potential for treating various diseases and injuries, but its widespread use is hindered by challenges like ineffective differentiation and low survival rates post-transplantation.
  • * Recent advancements in nanotechnology, including nanoparticles and quantum dots, have been found to enhance stem cell differentiation and proliferation by creating optimal microenvironments and delivering growth factors effectively.
  • * The integration of nanotechnology into stem cell therapy paves the way for precision medicine, allowing for better control of stem cell behavior and the potential for personalized and effective treatments.
View Article and Find Full Text PDF

Marine-derived proteins are emerging as a pivotal resource with diverse applications in food, pharmaceuticals, and biotechnological industries. The marine environment offers many protein sources, including fish, shellfish, algae, and microbes, which garnered attention due to their nutritional composition. Evaluating their protein and amino acid profiles is essential in assessing their viability as substitutes for conventional protein sources.

View Article and Find Full Text PDF

The persistence of organic/inorganic pollutants in the water has become a serious environmental issue. Among the different pollutants, dyes and heavy metal pollution in waterways are viewed as a global ecological problem that can have an impact on humans, plants, and animals. The necessity to develop a sustainable and environmentally acceptable approach to remove these toxic contaminants from the ecosystem has been raised.

View Article and Find Full Text PDF

Surfactants have always been a prominent chemical that is useful in various sectors (e.g., cleaning agent production industry, textile industry and painting industry).

View Article and Find Full Text PDF

In this present study, a novel and low cost surface improved material was prepared from the farm waste material (Borassus flabellifer male inflorescence) and its surface was enhanced by the sulphuric acid treatment to intensify the Ni(II) ions adsorption. The adsorption individualities such as availability of functional groups, essential elements and the exterior side and structural properties of the material were assessed by the FT-IR, EDX, SEM and XRD investigation. The impact of varied adsorption influencing parameters on Ni(II) ions adsorption was studied and optimized as pH - 6.

View Article and Find Full Text PDF

The research work focuses on the application of Cr(VI)-resistant plant growth-promoting bacteria Pannonibacter phragmetitus for enhancing Cr(VI) uptake by Sorghum bicolor. Significant increase in plant shoot and root characters was found when assisted by P. phragmetitus.

View Article and Find Full Text PDF

The present research is focused on the removal of Zn(II) ions from aqueous solution using nano zero-valent iron impregnated cashew nut shell (NZVI-CNS). The present system was investigated in batch mode operation. NZVI-CNS was prepared by the liquid-phase reduction process.

View Article and Find Full Text PDF

In this study, chitosan functionalised magnetic nano-particles (CMNP) was synthesised and utilised as an effective adsorbent for the removal of Pb(II) ions from aqueous solution. The experimental studies reveal that adsorbent material has finer adsorption capacity for the removal of heavy metal ions. Parameters affecting the adsorption of Pb(II) ions on CMNP, such as initial Pb(II) ion concentration, contact time, solution pH, adsorbent dosage and temperature were studied.

View Article and Find Full Text PDF

Elimination of heavy metals from contaminated streams is of prime concern due to their ability to cause toxic chaos with the metabolism of flora and fauna alike. Use of advanced nano-engineered technologies such as the innovative combination of surface chemistry, chemical engineering fundamentals and nanotechnology opens up particularly attractive horizons towards treatment of heavy metal contaminated water resources. The obtained product of surface engineered nanoadsorbent produced has successfully proven to show rapid adsorption rate and superior sorption efficiency towards the removal of a wide range of defiant heavy metal contaminants in wastewater.

View Article and Find Full Text PDF

In the present study, a novel activated carbon was prepared from low-cost eucalyptus seeds, which was utilised for the effectively removal of toxic zinc from the water/wastewater. The prepared adsorbent was studied by Fourier transform infrared spectroscopy and scanning electron microscopic characterisation studies. Adsorption process was experimentally performed for optimising the influencing factors such as adsorbent dosage, solution pH, contact time, initial zinc concentration, and temperature for the maximum removal of zinc from aqueous solution.

View Article and Find Full Text PDF