Background: Patients with chronic lymphocytic leukemia (CLL) have reduced seroconversion rates and lower binding antibody (Ab) and neutralizing antibody (NAb) titers than healthy individuals following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mRNA vaccination. Here, we dissected vaccine-mediated humoral and cellular responses to understand the mechanisms underlying CLL-induced immune dysfunction.
Methods And Findings: We performed a prospective observational study in SARS-CoV-2 infection-naïve CLL patients (n = 95) and healthy controls (n = 30) who were vaccinated between December 2020 and June 2021.
Several independent lines of evidence suggest that megakaryocytes are dysfunctional in severe COVID-19. Herein, we characterized peripheral circulating megakaryocytes in a large cohort of inpatients with COVID-19 and correlated the subpopulation frequencies with clinical outcomes. Using peripheral blood, we show that megakaryocytes are increased in the systemic circulation in COVID-19, and we identify and validate S100A8/A9 as a defining marker of megakaryocyte dysfunction.
View Article and Find Full Text PDFChronic lymphocytic leukemia (CLL) patients have lower seroconversion rates and antibody titers following SARS-CoV-2 vaccination, but the reasons for this diminished response are poorly understood. Here, we studied humoral and cellular responses in 95 CLL patients and 30 healthy controls after two BNT162b2 or mRNA-2173 mRNA immunizations. We found that 42% of CLL vaccinees developed SARS-CoV-2-specific binding and neutralizing antibodies (NAbs), while 32% had no response.
View Article and Find Full Text PDFEpitopes with evidence of HLA-II-associated adaptation induce poorly immunogenic CD4 T-cell responses in HIV-positive (HIV) individuals. Many such escaped CD4 T-cell epitopes are encoded by HIV-1 vaccines being evaluated in clinical trials. Here, we assessed whether this viral adaptation adversely impacts CD4 T-cell responses following HIV-1 vaccination, thereby representing escaped epitopes.
View Article and Find Full Text PDFQuantification of the anti-SARS-CoV-2 antibody response has proven to be a prominent diagnostic tool during the COVID-19 pandemic. Antibody measurements have aided in the determination of humoral protection following infection or vaccination and will likely be essential for predicting the prevalence of population level immunity over the next several years. Despite widespread use, current tests remain limited in part, because antibody capture is accomplished through the use of complete spike and nucleocapsid proteins that contain significant regions of overlap with common circulating coronaviruses.
View Article and Find Full Text PDFJ Clin Invest
August 2021
CD8+ T cell responses restricted by MHC-E, a nonclassical MHC molecule, have been associated with protection in an SIV/rhesus macaque model. The biological relevance of HLA-E-restricted CD8+ T cell responses in HIV infection, however, remains unknown. In this study, CD8+ T cells responding to HIV-1 Gag peptides presented by HLA-E were analyzed.
View Article and Find Full Text PDFEmerg Infect Dis
September 2021
Not all persons recovering from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection develop SARS-CoV-2-specific antibodies. We show that nonseroconversion is associated with younger age and higher reverse transcription PCR cycle threshold values and identify SARS-CoV-2 viral loads in the nasopharynx as a major correlate of the systemic antibody response.
View Article and Find Full Text PDFA subset of COVID-19 patients exhibit post-acute sequelae of COVID-19 (PASC), but little is known about the immune signatures associated with these syndromes. We investigated longitudinal peripheral blood samples in 50 individuals with previously confirmed SARS-CoV-2 infection, including 20 who experienced prolonged duration of COVID-19 symptoms (lasting more than 30 days; median = 74 days) compared with 30 who had symptom resolution within 20 days. Individuals with prolonged symptom duration maintained antigen-specific T cell response magnitudes to SARS-CoV-2 spike protein in CD4+ and circulating T follicular helper cell populations during late convalescence, while those without persistent symptoms demonstrated an expected decline.
View Article and Find Full Text PDFCell Rep Med
January 2021
Convalescent plasma (CP) is widely used to treat COVID-19, but without formal evidence of efficacy. Here, we report the beneficial effects of CP in a severely ill COVID-19 patient with prolonged pneumonia and advanced chronic lymphocytic leukemia (CLL), who was unable to generate an antiviral antibody response of her own. On day 33 after becoming symptomatic, the patient received CP containing high-titer (ID > 5,000) neutralizing antibodies (NAbs), defervesced, and improved clinically within 48 h and was discharged on day 37.
View Article and Find Full Text PDFSARS-CoV-2 causes a wide spectrum of clinical manifestations and significant mortality. Studies investigating underlying immune characteristics are needed to understand disease pathogenesis and inform vaccine design. In this study, we examined immune cell subsets in hospitalized and nonhospitalized individuals.
View Article and Find Full Text PDFBackground: PCV13 (conjugated polysaccharide) and PPSV23 (polysaccharide only) are two licensed vaccines targeting S. pneumoniae. The role of CD4 T-cell responses in pneumococcal vaccines among healthy participants and their impact on antibodies is not yet known.
View Article and Find Full Text PDFHLA-I-associated human immunodeficiency virus (HIV) adaptation is known to negatively affect disease progression and CD8 T-cell responses. We aimed to assess how HLA-I-associated adaptation affects HIV vaccine-induced CD8 T-cell responses in 2 past vaccine efficacy trials. We found that vaccine-encoded adapted epitopes were less immunogenic than vaccine-encoded nonadapted epitopes, and adapted epitope-specific responses were less polyfunctional than nonadapted epitope-specific responses.
View Article and Find Full Text PDFBackground: HIV elite controllers suppress HIV viremia without antiretroviral therapy (ART), yet previous studies demonstrated that elite controllers maintain an activated T-cell phenotype. Chronic immune activation has detrimental consequences and thus ART has been advocated for all elite controllers. However, elite controllers are not a clinically homogenous group.
View Article and Find Full Text PDFJ Acquir Immune Defic Syndr
September 2015
Background: Cryptic epitopes (CEs) are peptides derived from the translation of 1 or more of the 5 alternative reading frames (ARFs; 2 sense and 3 antisense) of genes. Here, we compared response rates to HIV-1-specific CE predicted to be restricted by HLA-I alleles associated with protection against disease progression to those without any such association.
Methods: Peptides (9mer to 11mer) were designed based on HLA-I-binding algorithms for B*27, B*57, or B*5801 (protective alleles) and HLA-B*5301 or B*5501 (nonprotective allele) in all 5 ARFs of the 9 HIV-1 encoded proteins.
Antiretroviral therapy, antibody and CD8+ T cell-mediated responses targeting human immunodeficiency virus-1 (HIV-1) exert selection pressure on the virus necessitating escape; however, the ability of CD4+ T cells to exert selective pressure remains unclear. Using a computational approach on HIV gag/pol/nef sequences and HLA-II allelic data, we identified 29 HLA-II associated HIV sequence polymorphisms or adaptations (HLA-AP) in an African cohort of chronically HIV-infected individuals. Epitopes encompassing the predicted adaptation (AE) or its non-adapted (NAE) version were evaluated for immunogenicity.
View Article and Find Full Text PDFRetrovirology
February 2015
Background: CD8+ T cells recognize HIV-1 epitopes translated from a gene's primary reading frame (F1) and any one of its five alternative reading frames (ARFs) in the forward (F2, F3) or reverse (R1-3) directions. The 3' end of HIV-1's proviral coding strand contains a conserved sequence that is directly overlapping but antiparallel to the env gene (ARF R2) and encodes for a putative antisense HIV-1 protein called ASP. ASP expression has been demonstrated in vitro using HIV-transfected cell lines or infected cells.
View Article and Find Full Text PDFOpen Forum Infect Dis
September 2014
Background: We performed human immunodeficiency virus type 1 (HIV-1) transmitted/founder (T/F) virus analysis of the VAX003 vaccine efficacy trial participants to characterize the transmission bottleneck and test for vaccine-associated reduction or enhancement of infection in this injection drug user (IDU) cohort.
Methods: We performed single genome sequencing of plasma vRNA from 50 subjects sampled in early HIV infection. Sequences were analyzed phylogenetically, T/F viruses enumerated, and a sieve analysis performed.
This retrospective study was designed to assess statin effects on T-cell activation from HIV-infected individuals. Peripheral blood mononuclear cells from antiretroviral therapy suppressed HIV-infected individuals receiving atorvastatin or pravastatin were evaluated for T-cell activation, exhaustion and function. Atorvastatin was associated with a significant reduction in CD8 T-cell activation (HLA-DR, CD38/HLA-DR) and exhaustion (TIM-3, TIM-3/PD-1) whereas pravastatin had no effect.
View Article and Find Full Text PDFJ Acquir Immune Defic Syndr
February 2014
Introduction: Cryptic epitopes (CEs) can be encoded by any of the 5 alternative reading frames (ARFs, 2 sense and 3 antisense) of a known gene. Although CE responses are commonly detected during HIV-1 infection, it is not known whether these responses are induced after vaccination.
Methods: Using a bioinformatic approach, we determined that vaccines with codon-optimized HIV inserts significantly skewed CE sequences and are not likely to induce crossreactive responses to natural HIV CE.
The sooty mangabey-derived simian immunodeficiency virus (SIV) strain E660 (SIVsmE660) is a genetically heterogeneous, pathogenic isolate that is commonly used as a vaccine challenge strain in the nonhuman primate (NHP) model of human immunodeficiency virus type 1 (HIV-1) infection. Though it is often employed to assess antibody-based vaccine strategies, its sensitivity to antibody-mediated neutralization has not been well characterized. Here, we utilize single-genome sequencing and infectivity assays to analyze the neutralization sensitivity of the uncloned SIVsmE660 isolate, individual viruses comprising the isolate, and transmitted/founder (T/F) viruses arising from low-dose mucosal inoculation of macaques with the isolate.
View Article and Find Full Text PDFSingle genome sequencing of early HIV-1 genomes provides a sensitive, dynamic assessment of virus evolution and insight into the earliest anti-viral immune responses in vivo. By using this approach, together with deep sequencing, site-directed mutagenesis, antibody adsorptions and virus-entry assays, we found evidence in three subjects of neutralizing antibody (Nab) responses as early as 2 weeks post-seroconversion, with Nab titers as low as 1∶20 to 1∶50 (IC(50)) selecting for virus escape. In each of the subjects, Nabs targeted different regions of the HIV-1 envelope (Env) in a strain-specific, conformationally sensitive manner.
View Article and Find Full Text PDF