Publications by authors named "Sarah E Emerson"

Glycogen is the largest energy reserve in the brain, but the specific role of glycogen in supporting neuronal energy metabolism in vivo is not well understood. We established a system in to dynamically probe glycolytic states in single cells of living animals via the use of the glycolytic sensor HYlight and determined that neurons can dynamically regulate glycolysis in response to activity or transient hypoxia. We performed an RNAi screen and identified that PYGL-1, an ortholog of the human glycogen phosphorylase, is required in neurons for glycolytic plasticity.

View Article and Find Full Text PDF

Volume electron microscopy (vEM) datasets such as those generated for connectome studies allow nanoscale quantifications and comparisons of the cell biological features underpinning circuit architectures. Quantifying cell biological relationships in the connectome yields rich, multidimensional datasets that benefit from data science approaches, including dimensionality reduction and integrated graphical representations of neuronal relationships. We developed NeuroSC an open source online platform that bridges sophisticated graph analytics from data science approaches with the underlying cell biological features in the connectome.

View Article and Find Full Text PDF

During development, neurites and synapses segregate into specific neighborhoods or layers within nerve bundles. The developmental programs guiding placement of neurites in specific layers, and hence their incorporation into specific circuits, are not well understood. We implement novel imaging methods and quantitative models to document the embryonic development of the brain neuropil and discover that differential adhesion mechanisms control precise placement of single neurites onto specific layers.

View Article and Find Full Text PDF

Background: Semaphorin6A (Sema6A) and its PlexinA2 (PlxnA2) receptor canonically function as repulsive axon guidance cues. To understand downstream signaling mechanisms, we performed a microarray screen and identified the "clutch molecule" shootin-1 (shtn-1) as a transcriptionally repressed target. Shtn-1 is a key proponent of cell migration and neuronal polarization and must be regulated during nervous system development.

View Article and Find Full Text PDF

Protein kinase A (PKA), also known as cAMP dependent protein kinase, is an essential component of many signaling pathways, many of which regulate key developmental processes. Inactive PKA is a tetrameric holoenzyme, comprised of two catalytic (PRKAC), and two regulatory subunits. Upon cAMP binding, the catalytic subunits are released and thereby activated.

View Article and Find Full Text PDF

Plexins (Plxns) and Semaphorins (Semas) are key signaling molecules that regulate many aspects of development. Plxns are a family of transmembrane protein receptors that are activated upon extracellular binding by Semas. Activated Plxns trigger intracellular signaling cascades, which regulate a range of developmental processes, including axon guidance, neuronal positioning and vasculogenesis.

View Article and Find Full Text PDF

Plexins (Plxns) are semaphorin (Sema) receptors that play important signaling roles, particularly in the developing nervous system and vasculature. Sema-Plxn signaling regulates cellular processes such as cytoskeletal dynamics, proliferation, and differentiation. However, the receptor-proximal signaling mechanisms driving Sema-Plxn signal transduction are only partially understood.

View Article and Find Full Text PDF

Background: Semaphorin (Sema)/Plexin (Plxn) signaling is important for many aspects of neuronal development, however, the transcriptional regulation imposed by this signaling pathway is unknown. Previously, we identified an essential role for Sema6A/PlxnA2 signaling in regulating proliferation and cohesion of retinal precursor cells (RPCs) during early eye development. This study used RNA isolated from control, Sema6A-deficient and PlxnA2-deficient zebrafish embryos in a microarray analysis to identify genes that were differentially expressed when this signaling pathway was disrupted.

View Article and Find Full Text PDF