A pressing question resulting from global warming is how climate change will affect infectious diseases. Answering this question requires research into the effects of weather on the population dynamics of transmission and infection; elucidating these effects, however, has proved difficult due to the challenges of assessing causality from the predominantly observational data available in epidemiological research. Here we show how concepts from causal inference-the sub-field of statistics aiming at inferring causality from data-can guide that research.
View Article and Find Full Text PDFPathogen-pathogen interactions represent a critical but little-understood feature of infectious disease dynamics. In particular, experimental evidence suggests that influenza virus and respiratory syncytial virus (RSV) compete with each other, such that infection with one confers temporary protection against the other. However, such interactions are challenging to study using common epidemiologic methods.
View Article and Find Full Text PDFPneumococcal conjugate vaccines (PCVs) protect against diseases caused by Streptococcus pneumoniae, such as meningitis, bacteremia, and pneumonia. It is challenging to estimate their population-level impact due to the lack of a perfect control population and the subtleness of signals when the endpoint-such as all-cause pneumonia-is nonspecific. Here we present a new approach for estimating the impact of PCVs: using least absolute shrinkage and selection operator (LASSO) regression to select variables in a synthetic control model to predict the counterfactual outcome for vaccine impact inference.
View Article and Find Full Text PDFDespite the availability of effective vaccines, the persistence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suggests that cocirculation with other pathogens and resulting multiepidemics (of, for example, COVID-19 and influenza) may become increasingly frequent. To better forecast and control the risk of such multiepidemics, it is essential to elucidate the potential interactions of SARS-CoV-2 with other pathogens; these interactions, however, remain poorly defined. Here, we aimed to review the current body of evidence about SARS-CoV-2 interactions.
View Article and Find Full Text PDFThere is growing experimental evidence that many respiratory viruses-including influenza and SARS-CoV-2-can interact, such that their epidemiological dynamics may not be independent. To assess these interactions, standard statistical tests of independence suggest that the prevalence ratio-defined as the ratio of co-infection prevalence to the product of single-infection prevalences-should equal unity for non-interacting pathogens. As a result, earlier epidemiological studies aimed to estimate the prevalence ratio from co-detection prevalence data, under the assumption that deviations from unity implied interaction.
View Article and Find Full Text PDFClimate drivers such as humidity and temperature may play a key role in influenza seasonal transmission dynamics. Such a relationship has been well defined for temperate regions. However, to date no models capable of capturing the diverse seasonal pattern in tropical and subtropical climates exist.
View Article and Find Full Text PDFPLoS Comput Biol
October 2020
Past work has shown that models incorporating human travel can improve the quality of influenza forecasts. Here, we develop and validate a metapopulation model of twelve European countries, in which international translocation of virus is driven by observed commuting and air travel flows, and use this model to generate influenza forecasts in conjunction with incidence data from the World Health Organization. We find that, although the metapopulation model fits the data well, it offers no improvement over isolated models in forecast quality.
View Article and Find Full Text PDFPLoS Comput Biol
February 2019
Accurate forecasts of influenza incidence can be used to inform medical and public health decision-making and response efforts. However, forecasting systems are uncommon in most countries, with a few notable exceptions. Here we use publicly available data from the World Health Organization to generate retrospective forecasts of influenza peak timing and peak intensity for 64 countries, including 18 tropical and subtropical countries.
View Article and Find Full Text PDFAlthough forecasts and other mathematical models have the potential to play an important role in mitigating the impact of infectious disease outbreaks, the extent to which these tools are used in public health decision making in the United States is unclear. Throughout 2015, we invited public health practitioners belonging to three national public health organizations to complete a cross-sectional survey containing questions on model awareness, model use, and communication with modelers. Of 39 respondents, 46.
View Article and Find Full Text PDFBackground: Recent evidence suggests that the majority of HIV transmissions among men who have sex with men (MSM) occur between steady partners. We sought to determine factors associated with HIV transmission risks in steady partnerships.
Methods: Data is from the German cross-sectional 2013 Gay Men and AIDS survey.
Proc Natl Acad Sci U S A
December 2012
The combination of irradiated fibroblast feeder cells and Rho kinase inhibitor, Y-27632, conditionally induces an indefinite proliferative state in primary mammalian epithelial cells. These conditionally reprogrammed cells (CRCs) are karyotype-stable and nontumorigenic. Because self-renewal is a recognized property of stem cells, we investigated whether Y-27632 and feeder cells induced a stem-like phenotype.
View Article and Find Full Text PDF