Publications by authors named "Sarah B Reiff"

The 4D Nucleome (4DN) Network aims to elucidate the complex structure and organization of chromosomes in the nucleus and the impact of their disruption in disease biology. We present the 4DN Data Portal ( https://data.4dnucleome.

View Article and Find Full Text PDF

Apicomplexans are the causative agents of numerous important infectious diseases including malaria and toxoplasmosis. Most of them harbour a chloroplast-like organelle called the apicoplast that is essential for the parasites' metabolism and survival. While most apicoplast proteins are nuclear encoded, the organelle also maintains its own genome, a 35 kb circle.

View Article and Find Full Text PDF

The giant unicellular ciliate Stentor coeruleus can be cut into pieces and each piece will regenerate into a healthy, full-sized individual. The molecular mechanism for how Stentor regenerates is a complete mystery, however, the process of regeneration shows striking similarities to the process of cell division. On a morphological level, the process of creating a second mouth in division or a new oral apparatus in regeneration have the same steps and occur in the same order.

View Article and Find Full Text PDF

The giant, single-celled organism Stentor coeruleus has a long history as a model system for studying pattern formation and regeneration in single cells. Stentor [1, 2] is a heterotrichous ciliate distantly related to familiar ciliate models, such as Tetrahymena or Paramecium. The primary distinguishing feature of Stentor is its incredible size: a single cell is 1 mm long.

View Article and Find Full Text PDF

The apicoplast, a chloroplast-like organelle, is an essential cellular component of most apicomplexan parasites, including Plasmodium and Toxoplasma. The apicoplast maintains its own genome, a 35-kb DNA molecule that largely encodes proteins required for organellar transcription and translation. Interference with apicoplast genome maintenance and function is a validated target for drug therapy for malaria and toxoplasmosis.

View Article and Find Full Text PDF

Background: Apicomplexan parasites cause numerous important human diseases, including malaria and toxoplasmosis. Apicomplexa belong to the Alveolata, a group that also includes ciliates and dinoflagellates. Apicomplexa retain a plastid organelle (the apicoplast) that was derived from an endosymbiotic relationship between the alveolate ancestor and a red alga.

View Article and Find Full Text PDF