Publications by authors named "Sarah A Cutts"

Most work on functional connectivity (FC) in neuroimaging data prefers longer scan sessions or greater subject count to improve reliability of brain-behavior relationships or predictive models. Here, we investigate whether systematically isolating moments in time can improve brain-behavior relationships and outperform full scan data. We assess how behavioral relationships vary over time points that are less visible in full FC based on co-fluctuation amplitude.

View Article and Find Full Text PDF

Background: The pathophysiology of attention-deficit/hyperactivity disorder (ADHD) is characterized by atypical brain network organization and dynamics. Although functional brain networks adaptively reconfigure across cognitive contexts, previous studies have largely focused on network dysfunction during the resting state. In this preliminary study, we examined how functional brain network organization and dynamics flexibly reconfigure across rest and 2 cognitive control tasks with different cognitive demands in 30 children with ADHD and 36 typically developing children (ages 8-12 years).

View Article and Find Full Text PDF

Understanding the interrelationships of brain function as measured by resting-state magnetic resonance imaging and neuropsychological/behavioral measures in Alzheimer's disease is key for advancement of neuroimaging analysis methods in clinical research. The edge time-series framework recently developed in the field of network neuroscience, in combination with other network science methods, allows for investigations of brain-behavior relationships that are not possible with conventional functional connectivity methods. Data from the Indiana Alzheimer's Disease Research Center sample (53 cognitively normal control, 47 subjective cognitive decline, 32 mild cognitive impairment, and 20 Alzheimer's disease participants) were used to investigate relationships between functional connectivity components, each derived from a subset of time points based on co-fluctuation of regional signals, and measures of domain-specific neuropsychological functions.

View Article and Find Full Text PDF

Understanding the interrelationships of brain function as measured by resting-state magnetic resonance imaging and neuropsychological/behavioral measures in Alzheimer's disease is key for advancement of neuroimaging analysis methods in clinical research. The edge time-series framework recently developed in the field of network neuroscience, in combination with other network science methods, allows for investigations of brain-behavior relationships that are not possible with conventional functional connectivity methods. Data from the Indiana Alzheimer's Disease Research Center sample (53 cognitively normal control, 47 subjective cognitive decline, 32 mild cognitive impairment, and 20 Alzheimer's disease participants) were used to investigate relationships between functional connectivity components, each derived from a subset of time points based on co-fluctuation of regional signals, and measures of domain-specific neuropsychological functions.

View Article and Find Full Text PDF

Edge time series decompose functional connectivity into its framewise contributions. Previous studies have focused on characterizing the properties of high-amplitude frames (time points when the global co-fluctuation amplitude takes on its largest value), including their cluster structure. Less is known about middle- and low-amplitude co-fluctuations (peaks in co-fluctuation time series but of lower amplitude).

View Article and Find Full Text PDF

Functional connectivity (FC) profiles contain subject-specific features that are conserved across time and have potential to capture brain-behavior relationships. Most prior work has focused on spatial features (nodes and systems) of these FC fingerprints, computed over entire imaging sessions. We propose a method for temporally filtering FC, which allows selecting specific moments in time while also maintaining the spatial pattern of node-based activity.

View Article and Find Full Text PDF

Resting-state functional connectivity is typically modeled as the correlation structure of whole-brain regional activity. It is studied widely, both to gain insight into the brain's intrinsic organization but also to develop markers sensitive to changes in an individual's cognitive, clinical, and developmental state. Despite this, the origins and drivers of functional connectivity, especially at the level of densely sampled individuals, remain elusive.

View Article and Find Full Text PDF

Both cortical and subcortical regions can be functionally organized into networks. Regions of the basal ganglia are extensively interconnected with the cortex via reciprocal connections that relay and modulate cortical function. Here we employ an edge-centric approach, which computes co-fluctuations among region pairs in a network to investigate the role and interaction of subcortical regions with cortical systems.

View Article and Find Full Text PDF

Functional connectivity (FC) describes the statistical dependence between neuronal populations or brain regions in resting-state fMRI studies and is commonly estimated as the Pearson correlation of time courses. Clustering or community detection reveals densely coupled sets of regions constituting resting-state networks or functional systems. These systems manifest most clearly when FC is sampled over longer epochs but appear to fluctuate on shorter timescales.

View Article and Find Full Text PDF

Visual processing in parietal areas of the dorsal stream facilitates sensorimotor transformations for rapid movement. This action-related visual processing is hypothesized to play a distinct functional role from perception-related processing in the ventral stream. However, it is unclear how the two streams interact when perceptual identification is a prerequisite to executing an accurate movement.

View Article and Find Full Text PDF

Illusory senses of ownership and agency (that the hand or effector that we see belongs to us and moves at our will, respectively) support the embodiment of prosthetic limbs, tele-operated surgical devices, and human-machine interfaces. We exposed forty-eight individuals to four different procedures known to elicit illusory ownership or agency over a fake visible rubber hand or finger. The illusory ownership or agency arising from the hand correlated with that of the finger.

View Article and Find Full Text PDF

While reaching for a coffee cup, we are aware that the hand we see belongs to us and it moves at our will (reflecting our senses of ownership and agency, respectively), and that the cup is within our hand's reach rather than beyond it (i.e., in reachable space, RS, rather than in non-reachable space, NRS).

View Article and Find Full Text PDF