Publications by authors named "Sara Carli"

Background And Objectives: The mitochondrial DNA (mtDNA) genes and encode for subunits α and 8 (A6L) of the adenosine triphosphate synthase complex. Pathogenetic variants in cause incurable mitochondrial syndromes encompassing a wide spectrum of clinical features including ataxia, motor and language developmental delay, deafness, retinitis pigmentosa, and Leigh pattern in brain MRI. Typically, higher levels of mtDNA variants lead to more severe symptomatology although even individuals with similar mtDNA mutational loads exhibit high clinical variability.

View Article and Find Full Text PDF

Objective: Recessive variants in the gene cause thymidine kinase 2 deficiency (TK2d) presenting with infantile, childhood, or adult-onset myopathy. CNS involvement is reported in only 25% of the infantile form. Compassionate use of deoxynucleoside substrate enhancement therapy (dC/dT) has been demonstrated safe and effective in TK2d myopathy, but no data are available on the potential efficacy on the human brain disease.

View Article and Find Full Text PDF

Autosomal recessive pathogenetic variants in the gene cause deficiency of deoxyguanosine kinase activity and mitochondrial deoxynucleotides pool imbalance, consequently, leading to quantitative and/or qualitative impairment of mitochondrial DNA synthesis. Typically, patients present early-onset liver failure with or without neurological involvement and a clinical course rapidly progressing to death. This is an international multicentre study aiming to provide a retrospective natural history of deoxyguanosine kinase deficient patients.

View Article and Find Full Text PDF

COQ7 pathogenetic variants cause primary CoQ deficiency and a clinical phenotype of encephalopathy, peripheral neuropathy, or multisystemic disorder. Early diagnosis is essential for promptly starting CoQ supplementation. Here, we report novel compound heterozygous variants in the COQ7 gene responsible for a prenatal onset (20 weeks of gestation) of hypertrophic cardiomyopathy and intestinal dysmotility in a Bangladesh consanguineous family with two affected siblings.

View Article and Find Full Text PDF

Rett syndrome (RTT) is a X-linked neurodevelopmental disorder which represents the leading cause of severe incurable intellectual disability in females worldwide. The vast majority of RTT cases are caused by mutations in the X-linked MECP2 gene, and preclinical studies on RTT largely benefit from the use of mouse models of Mecp2, which present a broad spectrum of symptoms phenocopying those manifested by RTT patients. Neurons represent the core targets of the pathology; however, neuroanatomical abnormalities that regionally characterize the Mecp2 deficient mammalian brain remain ill-defined.

View Article and Find Full Text PDF

Mutations in the X-linked CDKL5 gene cause CDKL5 deficiency disorder (CDD), a severe neurodevelopmental condition mainly characterized by infantile epileptic encephalopathy, intellectual disability, and autistic features. The molecular mechanisms underlying the clinical symptoms remain largely unknown and the identification of reliable biomarkers in animal models will certainly contribute to increase our comprehension of CDD as well as to assess the efficacy of therapeutic strategies. Here, we used different Magnetic Resonance (MR) methods to disclose structural, functional, or metabolic signatures of Cdkl5 deficiency in the brain of adult mice.

View Article and Find Full Text PDF

MeCP2 is a fundamental protein associated with several neurological disorders, including Rett syndrome. It is considered a multifunctional factor with a prominent role in regulating chromatin structure; however, a full comprehension of the consequences of its deficiency is still lacking. Here, we characterize a novel mouse model of Mecp2 bearing the human mutation Y120D, which is localized in the methyl-binding domain.

View Article and Find Full Text PDF