Publications by authors named "Sanjeevikumar Padmanaban"

This paper introduces an innovative three-port DC-DC converter (TPC)-based wireless charging system (WCS) that seamlessly integrates photovoltaic (PV) and an energy storage system (ESS). The proposed system leverages the advantages of an isolated topology, enhancing safety, reducing electromagnetic interference, and enabling flexible power management. The regulation of input ports from PV and ESS (battery) is achieved through a pulse width modulation switching scheme, ensuring stable voltage across the WCS port.

View Article and Find Full Text PDF

The serious concern about the continuous depletion of fossil fuels and their environmental impact has drawn the focus of researchers worldwide, towards the renewable energy sector. Renewable resources are being penetrated into microgrids on a larger scale in order to manage sustainable financial and environmental viability. Increased penetration of renewable resources has increased the operational challenges associated with it.

View Article and Find Full Text PDF

Resonant Inductive Power Transmission (RIPT) represents a cutting-edge Wireless Power Transfer (WPT) technology, emerging as a secure and practical solution for charging electric vehicles (EVs). While Dynamic Wireless Charging Systems (DWCS) reduce the need for large batteries compared to static charging, they entail higher initial investments. This study introduces an innovative approach to DWCS utilizing a half-bridge-based multi-legged inverter configuration.

View Article and Find Full Text PDF

The expanding complexity of modern energy systems and the increasing integration of renewable sources make stable load frequency control (LFC) in interconnected power networks a continuing issue. Traditional controllers, such as proportional-integral (PI), proportional-integral-derivative (PID), and other subordinate control methods, frequently fail to control frequency adequately, especially in multi-source generating systems. Furthermore, standard optimization techniques may exhibit sluggish convergence and inefficient tuning, limiting their usefulness in real-time applications.

View Article and Find Full Text PDF

A DC microgrid with renewable energy sources can achieve reduced current ripple, higher efficiency, faster dynamics, high voltage gain, and less operational stress by interfacing with an interleaved boost converter (IBC). The stability of an IBC linked to a DC microgrid supplying a constant power load (CPL) can be imperceptibly guaranteed by a conventional controller. A tightly regulated CPL with nonlinear and negative incremental impedance characteristics will lead to stability issues.

View Article and Find Full Text PDF

The integration of blockchain technology with the IoToffers numerous opportunities to enhance the privacy, security, and integrity. This study comprehensively analyze the challenges, scope, and potential solutions associated with integrating blockchain technology and the IoT, with a specific emphasis on nuclear energy applications. We discuss the roles and various aspects of blockchain and the IoT, highlighting their multiple dimensions and applications.

View Article and Find Full Text PDF

Effective and efficient use of energy is key to sustainable industrial and economic growth in modern times. Demand-side management (DSM) is a relatively new concept for ensuring efficient energy use at the consumer level. It involves the active participation of consumers in load management through different incentives.

View Article and Find Full Text PDF

This paper presents a comprehensive review of advanced technologies with various control approaches in terms of their respective merits and outcomes for power grids. Distributed energy storage control is classified into automatic voltage regulator and load frequency control according to corresponding functionalities. These control strategies maintain a power balance between generation and demand.

View Article and Find Full Text PDF

Over the past few years, unmanned aerial vehicles (UAV) or drones have been used for many applications. In certain applications like surveillance and emergency rescue operations, multiple drones work as a network to achieve the target in which any one of the drones will act as the master or coordinator to communicate, monitor, and control other drones. Hence, drones are energy-constrained; there is a need for effective coordination among them in terms of decision making and communication between drones and base stations during these critical situations.

View Article and Find Full Text PDF

The friction welding of tube to tube plate using an external tool (FWTPET) is widely deployed in several industrial applications, such as aerospace, automotive, and power plants. Moreover, for achieving a better tensile strength and hardness in the weld zone, the friction stir processing (FSP) technique was incorporated into the FWTPET process for joining aluminum alloys (AA6063 tube, AA6061 tube plate). Furthermore, it has to be noted that FWTPET was applied for joining the AA6063 tube to the AA6061 tube plate, and FSP was deployed for reinforcing the weld zone with carbon nanotube (CNT) and silicon nitride (SiN) particles, thereby attaining the desirable mechanical properties.

View Article and Find Full Text PDF