Publications by authors named "Sandrine Marie"

Pyridoxine-dependent epilepsy (PDE) represents a group of rare developmental and epileptic encephalopathies. The most common PDE is caused by biallelic pathogenic variants in (PDE-ALDH7A1; OMIM #266100), which encodes α-aminoadipate semialdehyde (α-AASA) dehydrogenase, a key enzyme in lysine catabolism. Affected individuals present with seizures unresponsive to conventional anticonvulsant medications but responsive to high-dose of pyridoxine (vitamin B6).

View Article and Find Full Text PDF
Article Synopsis
  • Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are key enzymes in purine recycling, and mutations in HGPRT lead to Lesch-Nyhan disease (LND), which currently has no treatment.
  • The fruit fly model was used to study LND mechanisms, revealing that lack of HGPRT activity leads to various metabolic and behavioral issues in flies, including increased uric acid levels and locomotor problems.
  • Feeding adenosine during development showed promise in rescuing seizure-like behavior, and the study suggests that the fruit fly could help in understanding LND better, potentially leading to therapeutic approaches.
View Article and Find Full Text PDF
Article Synopsis
  • Fatty acid oxidation (FAO) disorders are genetic conditions that disrupt the body's ability to process fatty acids, leading to serious health crises during fasting or illness.
  • A study analyzed 54 patients, revealing that a majority (64.8%) were diagnosed through newborn screening, with medium-chain acyl-CoA dehydrogenase deficiency being the most common.
  • The research highlights the significant benefits of newborn screening in Southern Belgium, which has improved neurological outcomes by reducing metabolic crises and preventing mortality in affected patients.
View Article and Find Full Text PDF

Glycogen storage disease type Ib (GSD1b) and G6PC3-deficiency are rare autosomal recessive diseases caused by inactivating mutations in SLC37A4 (coding for G6PT) and G6PC3, respectively. Both diseases are characterized by neutropenia and neutrophil dysfunction due to the intracellular accumulation of 1,5-anhydroglucitol-6-phosphate (1,5-AG6P), a potent inhibitor of hexokinases. We recently showed that the use of SGLT2 inhibitor therapy to reduce tubular reabsorption of its precursor, 1,5-anhydroglucitol (1,5-AG), a glucose analog present in blood, successfully restored the neutropenia and neutrophil function in G6PC3-deficient and GSD1b patients.

View Article and Find Full Text PDF
Article Synopsis
  • * These metabolic defects can result in various neurological issues, including psychomotor retardation, epilepsy, and sensory problems, which are often nonspecific and may go unnoticed.
  • * Early diagnosis through genetic testing and biochemical screening can improve outcomes for affected children, but many cases remain under-diagnosed, necessitating increased awareness and testing among clinicians.
View Article and Find Full Text PDF

Cystinosis is an autosomal recessive lysosomal storage disease, caused by mutations in the CTNS gene, resulting in multi-organ cystine accumulation. Three forms of cystinosis are distinguished: infantile and juvenile nephropathic cystinosis affecting kidneys and other organs such as the eyes, endocrine system, muscles, and brain, and adult ocular cystinosis affecting only the eyes. Currently, elevated white blood cell (WBC) cystine content is the gold standard for the diagnosis of cystinosis.

View Article and Find Full Text PDF

5-Amino-4-imidazolecarboxamide-ribosiduria (AICA-ribosiduria) is an extremely rare inborn error of purine biosynthesis metabolism caused by pathogenic variants in ATIC gene that encodes a protein catalyzing the last steps of the de novo purine biosynthesis. To date, only six cases have been reported presenting a severe phenotype characterized by coarse facies and variable dysmorphic features, intrauterine and postnatal growth retardation, severe and early neurodevelopment delay, profound congenital visual deficit, scoliosis and, less frequently, epilepsy, aortic coarctation, chronic hepatic cytolysis, nephrocalcinosis and mild genitalia malformation. In this article, we report two new cases of AICA-ribosiduria carrying new pathogenic variants in ATIC (c.

View Article and Find Full Text PDF

SARS-CoV-2 causes major disturbances in serum metabolite levels, associated with severity of the immune response. Despite the numerous advantages of urine for biomarker discovery, the potential association between urine metabolites and disease severity has not been investigated in coronavirus disease 2019 (COVID-19). In a proof-of-concept study, we performed quantitative urine metabolomics in patients hospitalized with COVID-19 and controls using LC-MS/MS.

View Article and Find Full Text PDF

Purines are essential molecules that are components of vital biomolecules, such as nucleic acids, coenzymes, signaling molecules, as well as energy transfer molecules. The de novo biosynthesis pathway starts from phosphoribosylpyrophosphate (PRPP) and eventually leads to the synthesis of inosine monophosphate (IMP) by means of 10 sequential steps catalyzed by six different enzymes, three of which are bi-or tri-functional in nature. IMP is then converted into guanosine monophosphate (GMP) or adenosine monophosphate (AMP), which are further phosphorylated into nucleoside di- or tri-phosphates, such as GDP, GTP, ADP and ATP.

View Article and Find Full Text PDF

Three new therapies for spinal muscular atrophy (SMA) have been approved by the United States Food and Drug Administration and the European Medicines Agency since 2016. Although these new therapies improve the quality of life of patients who are symptomatic at first treatment, administration before the onset of symptoms is significantly more effective. As a consequence, newborn screening programs have been initiated in several countries.

View Article and Find Full Text PDF

Zellweger spectrum disorders (ZSD) are inborn errors of metabolism caused by mutations in PEX genes that lead to peroxisomal biogenesis disorder (PBD). No validated treatment is able to modify the dismal progression of the disease. ZSD mouse models used to develop therapeutic approaches are limited by poor survival and breeding restrictions.

View Article and Find Full Text PDF
Article Synopsis
  • AICA-ribosiduria is a rare genetic disorder caused by mutations in the ATIC gene, critical for purine synthesis, leading to high levels of AICA-riboside in urine.
  • Recent reports document three new cases, expanding the known instances of this condition from one to four, with observed symptoms including severe developmental delays, vision problems, growth issues, and physical deformities.
  • The condition may also involve frequent early-onset epilepsy and other less common complications, potentially linked to how the ATIC gene's dysfunction affects cellular processes due to accumulated AICA-riboside.
View Article and Find Full Text PDF

Background: Deletions or inactivating mutations of the cystinosin gene lead to cystine accumulation and crystals at acidic pH in patients with nephropathic cystinosis, a rare lysosomal storage disease and the main cause of hereditary renal Fanconi syndrome. Early use of oral cysteamine to prevent cystine accumulation slows progression of nephropathic cystinosis but it is a demanding treatment and not a cure. The source of cystine accumulating in kidney proximal tubular cells and cystine's role in disease progression are unknown.

View Article and Find Full Text PDF

Acyl-CoA dehydrogenase 9 (ACAD9) is a mitochondrial protein involved in oxidative phosphorylation complex I biogenesis. This protein also exhibits acyl-CoA dehydrogenase (ACAD) activity. ACAD9-mutated patients have been reported to suffer from primarily heart, muscle, liver, and nervous system disorders.

View Article and Find Full Text PDF

The purpose of the present work was to progress in our understanding of the pathophysiology of L-2-hydroxyglutaric aciduria, due to a defect in L-2-hydroxyglutarate dehydrogenase, by creating and studying a mouse model of this disease. L-2-hydroxyglutarate dehydrogenase-deficient mice (l2hgdh-/-) accumulated L-2-hydroxyglutarate in tissues, most particularly in brain and testis, where the concentration reached ≈ 3.5 μmol/g.

View Article and Find Full Text PDF

Background: Nephropathic cystinosis is a rare autosomal recessive disorder caused by mutations in the CTNS gene, encoding for cystinosin, a carrier protein transporting cystine out of lysosomes. Its deficiency leads to cystine accumulation and cell damage in multiple organs, especially in the kidney. In this study, we aimed to provide the first report describing the mutational spectrum of Egyptian patients with nephropathic cystinosis and their genotype-phenotype correlation.

View Article and Find Full Text PDF

It has been proposed that neonatal thyroid-stimulating hormone (TSH) concentrations are a good indicator of iodine deficiency in the population. A frequency of neonatal TSH concentrations above 5 mU/L below 3% has been proposed as the threshold indicating iodine sufficiency. The objective of the present study was to evaluate feasibility and usefulness of nation-wide neonatal TSH concentration screening results to assess iodine status in Belgium.

View Article and Find Full Text PDF

Adenylosuccinate lyase (ADSL) deficiency is a rare inborn error of metabolism resulting in accumulation of metabolites including succinylaminoimidazole carboxamide riboside (SAICAr) and succinyladenosine (S-Ado) in the brain and other tissues. Patients with ADSL have progressive psychomotor retardation, neonatal seizures, global developmental delay, hypotonia, and autistic features, although variable clinical manifestations may make the initial diagnosis challenging. Two cases of the severe form of the disease are reported here: an 18-month-old boy with global developmental delay, intractable neonatal seizures, progressive cerebral atrophy, and marked hypomyelination, and a 3-month-old girl presenting with microcephaly, neonatal seizures, and marked psychomotor retardation.

View Article and Find Full Text PDF

Tyrosinemia Type III is caused by the deficiency of 4-hydroxyphenylpyruvate dioxygenase (4-HPPD), an enzyme involved in the catabolic pathway of tyrosine. To our knowledge, only a few patients presenting with this disease have been described in the literature, and the clinical phenotype remains variable and unclear. We report the case of a boy with tyrosinemia Type III detected using neonatal screening, who is homozygous for the splice donor mutation IVS11+1G>A in intron 11 of the HPD gene.

View Article and Find Full Text PDF
Article Synopsis
  • A collaborative effort involving 154 laboratories across 49 countries aims to enhance newborn screening quality using a new approach based on tandem mass spectrometry.
  • Multivariate pattern recognition software was developed by analyzing a large database of results, allowing for the integration of multiple clinical data points into a single score.
  • The evaluation of this approach indicates significant improvements, with tools potentially reducing false-positive diagnoses by over 50% and false-negative cases by 88%, contributing to very low false-positive rates in Minnesota's screening results.
View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to clinically validate cutoff values for newborn screening using tandem mass spectrometry by collaborating globally.
  • Researchers analyzed data from about 25-30 million normal newborns and over 10,700 true positive cases to establish clinically significant cutoff ranges.
  • As of December 2010, data from 130 sites in 45 countries contributed to defining cutoff ranges for 114 markers, showcasing a high level of international cooperation in screening for rare metabolic disorders.
View Article and Find Full Text PDF

Adenylosuccinate lyase deficiency is a rare autosomal disorder of de novo purine synthesis, which results in the accumulation of succinylpurines in body fluids. Patients with adenylosuccinate lyase deficiency show a variable combination of mental retardation, epilepsy and autistic features and are usually discovered during screens for unexplained encephalopathy using the Bratton-Marshall assay that reveals the excretion of the succinylaminoimidazolecarboxamide riboside (SAICAr). Here, we report on two sisters aged 11 and 12 years presented with global developmental delay, motor apraxia, severe speech deficits, seizures and behavioural features, which combined excessive laughter, a very happy disposition, hyperactivity, a short attention span, the mouthing of objects, tantrums and stereotyped movements that gave a behavioural profile mimicking Angelman syndrome.

View Article and Find Full Text PDF

In a female infant with dysmorphic features, severe neurological defects, and congenital blindness, a positive urinary Bratton-Marshall test led to identification of a massive excretion of 5-amino-4-imidazolecarboxamide (AICA)-riboside, the dephosphorylated counterpart of AICAR (also termed "ZMP"), an intermediate of de novo purine biosynthesis. ZMP and its di- and triphosphate accumulated in the patient's erythrocytes. Incubation of her fibroblasts with AICA-riboside led to accumulation of AICAR, not observed in control cells, suggesting impairment of the final steps of purine biosynthesis, catalyzed by the bifunctional enzyme AICAR transformylase/IMP cyclohydrolase (ATIC).

View Article and Find Full Text PDF

We report on the striking variable expression of adenylosuccinate lyase (ADSL) deficiency in three patients belonging to a family which originates from Portugal. ADSL deficiency is a rare autosomal recessive disorder of the de novo purine synthesis which results in accumulation of succinylpurines in body fluids. As a result, patients may have variable combinations of psychomotor retardation and/or regression, seizures, autistic features and cerebellar vermis hypoplasia.

View Article and Find Full Text PDF