Publications by authors named "Sandrine Geiger"

In this study, we proved that the stabilisation of Pickering emulsions by polymer nanoparticles (NPs) heavily depends on polymer characteristics. We prepared NPs with four poly(lactide-co-glycolide) polymers (PLGA), of different molar masses (14,000 and 32,000 g/mol) and end groups (acid or alkylester). NPs were either bare (without stabilising polymer) or covered by polyvinyl alcohol (PVA).

View Article and Find Full Text PDF

Pickering emulsions were formulated using biodegradable and biocompatible poly(lactic- co-glycolic acid) (PLGA) nanoparticles (NPs) prepared without surfactants or any other polymer than PLGA. A pharmaceutical and cosmetic oil (Miglyol) was chosen as the oil phase at a ratio of 10% w/w. These emulsions were then compared with emulsions using the same oil but formulated with well-described PLGA-poly(vinyl alcohol) (PVA) NPs, i.

View Article and Find Full Text PDF

Hyaluronic acid liposomal gels have previously demonstrated in vivo their great potential for drug delivery. Elucidating their phase behavior and structure would provide a better understanding of their use properties. This work evaluates the microstructure and the phase behavior of mixtures of hyaluronic acid (HA) and liposomes and their impact on the vesicle mobility.

View Article and Find Full Text PDF

The major aim of this study was to get deeper insight into the process of polymer cross-linking and the resulting structure of beads based on chitosan (CS) or chitosan/poly(ethylene oxide) (CS/PEO) semi-interpenetrating networks (semi-IPNs) as new carrier materials for oral drug delivery. Spherical hydrogels were prepared by a dropping method. The uptake kinetics of the cross-linking agent glyoxal into the beads were monitored and quantitatively described using Fick's second law of diffusion.

View Article and Find Full Text PDF

Poloxamers F88 (EO97PO39EO97) and P85 (EO27PO39EO27) are triblock copolymers of ethylene oxide (EO) and propylene oxide (PO), which have the same hydrophobic PO block. We studied aqueous solutions of these two copolymers by the conjoint use of differential scanning calorimetry (DSC), rheology, and small-angle X-ray scattering (SAXS). The results showed that the temperature-induced micellization of aqueous solutions of F88 and P85 was a progressive process followed by gelation for sufficiently concentrated samples.

View Article and Find Full Text PDF