Publications by authors named "Sandra N Milik"

Acute myeloid leukemia (AML) is an aggressive hematological malignancy with poor survival rates in adults, posing a significant economic burden. FMS-like tyrosine kinase 3 (FLT3) mutations are linked to poor prognosis in AML and resistance to clinically approved FLT3 inhibitors. Previously, we reported a novel benzimidazole-based FLT3 inhibitor, 4ACP, with nanomolar activities against FLT3-ITD and FLT3-TKD mutants, showing selective cytotoxicity against FLT3-ITD AML cell lines.

View Article and Find Full Text PDF

Antibiotic-resistant bacteria represent a serious threat to modern medicine and human life. Only a minority of antibacterial agents are active against Gram-negative bacteria. Hence, the development of novel antimicrobial agents will always be a vital need.

View Article and Find Full Text PDF

FMS-like tyrosine kinase 3 (FLT3) enzyme overexpression and mutations are the most common molecular abnormalities associated with acute myeloid leukemia (AML). In addition, recent studies investigated the role of tropomyosin receptor kinase A (TrKA) enzyme fusions in promoting AML growth and survival. Based on these premises, targeting both kinases using dual inhibitors would constitute a promising therapeutic approach to target resistant AML.

View Article and Find Full Text PDF

Aurora B is a pivotal cell cycle regulator where errors in its function results in polyploidy, genetic instability, and tumorigenesis. It is overexpressed in many cancers, consequently, targeting Aurora B with small molecule inhibitors constitutes a promising approach for anticancer therapy. Guided by structure-based design and molecular hybridization approach we developed a series of fifteen indolin-2-one derivatives based on a previously reported indolin-2-one-based multikinase inhibitor (1).

View Article and Find Full Text PDF

Gram-negative bacteria pose a distinctive risk worldwide, especially with the evolution of major resistance to carbapenems, fluoroquinolones and colistin. Therefore, development of new antibacterial agents to target Gram-negative infections is of utmost importance. Using phenotypic screening, we synthesized and tested thirty-one benzimidazole derivatives against E.

View Article and Find Full Text PDF

In light of the emergence of resistance against the currently available EGFR inhibitors, our study focuses on tackling this problem through the development of dual EGFR/HER2 inhibitors with improved enzymatic affinities. Guided by the binding mode of the marketed dual EGFR/HER2 inhibitor, Lapatinib, we proposed the design of dual EGFR/HER2 inhibitors based on the 6-phenylthieno[2,3-d]pyrimidine as a core scaffold and hinge binder. After two cycles of screening aiming to identify the optimum aniline headgroup and solubilizing group, we eventually identified 27b as a dual EGFR/HER2 inhibitor with IC values of 91.

View Article and Find Full Text PDF

Epidermal Growth Factor Receptor (EGFR) stands out as a key player in the development of many cancers. Its dysregulation is associated with a vast number of tumors such as non-small-cell lung cancer, colon cancer, head-and-neck cancer, breast and ovarian cancer. Being implicated in the development of a number of the most lethal cancers worldwide, EGFR has long been considered as a focal target for cancer therapies, ever since the FDA approval of "Gefitinib" in 2003 and up to the last FDA approved small molecule EGFR kinase inhibitor "Osimertinib" in 2015.

View Article and Find Full Text PDF