Publications by authors named "Sandra D Laufer"

Human induced pluripotent stem cells (hiPSCs) are an invaluable tool to study molecular mechanisms on a human background. Culturing stem cells at an oxygen level different from their microenvironmental niche impacts their viability. To understand this mechanistically, dermal skin fibroblasts of 52 probands were reprogrammed into hiPSCs, followed by either hyperoxic (20 % O) or physioxic (5 % O) culture and proteomic profiling.

View Article and Find Full Text PDF

The heterozygous mutation c.155G > T in GNB2 clinically leads to sinus bradycardia and sinus node dysfunction. Here, patient-specific skin fibroblasts of the mutation carrier were used for Sendai virus reprogramming into human induced-pluripotent stem cells (hiPSC).

View Article and Find Full Text PDF

Kidney organoids are a promising model to study kidney disease, but their use is constrained by limited knowledge of their functional protein expression profile. Here, we define the organoid proteome and transcriptome trajectories over culture duration and upon exposure to TNFα, a cytokine stressor. Older organoids increase deposition of extracellular matrix but decrease expression of glomerular proteins.

View Article and Find Full Text PDF

Current therapies for Fabry disease are based on reversing intracellular accumulation of globotriaosylceramide (Gb3) by enzyme replacement therapy (ERT) or chaperone-mediated stabilization of the defective enzyme, thereby alleviating lysosomal dysfunction. However, their effect in the reversal of end-organ damage, like kidney injury and chronic kidney disease, remains unclear. In this study, ultrastructural analysis of serial human kidney biopsies showed that long-term use of ERT reduced Gb3 accumulation in podocytes but did not reverse podocyte injury.

View Article and Find Full Text PDF

Purpose: Dilated cardiomyopathy (DCM) is a primary disorder of the cardiac muscle, characterised by dilatation of the left ventricle and contractile dysfunction. About 50% of DCM cases can be attributed to monogenic causes, whereas the aetiology in the remaining patients remains unexplained.

Methods: We report a family with two brothers affected by severe DCM with onset in the adolescent period.

View Article and Find Full Text PDF

MYBPC3 is the most frequently affected gene in hypertrophic cardiomyopathy (HCM), which is an autosomal-dominant cardiac disease caused by mutations in sarcomeric proteins. Bi-allelic truncating MYBPC3 mutations are associated with severe forms of neonatal cardiomyopathy. We reprogrammed skin fibroblasts from a HCM patient carrying a heterozygous MYBPC3 truncating mutation into human induced pluripotent stem cells (iPSC) and used CRISPR/Cas9 to generate bi-allelic MYBPC3 truncating mutation and isogenic control hiPSC lines.

View Article and Find Full Text PDF

The reproducibility of stem cell research relies on the constant availability of quality-controlled cells. As the quality of human induced pluripotent stem cells (hiPSCs) can deteriorate in the course of a few passages, cell banking is key to achieve consistent results and low batch-to-batch variation. Here, we provide a cost-efficient route to generate master and working cell banks for basic research projects.

View Article and Find Full Text PDF

Background: DNA methylation acts as a mechanism of gene transcription regulation. It has recently gained attention as a possible therapeutic target in cardiac hypertrophy and heart failure. However, its exact role in cardiomyocytes remains controversial.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease accompanied by structural and contractile alterations. We identified a rare c.740C>T (p.

View Article and Find Full Text PDF

Gene therapy is a promising option for severe forms of genetic diseases. We previously provided evidence for the feasibility of trans-splicing, exon skipping, and gene replacement in a mouse model of hypertrophic cardiomyopathy (HCM) carrying a mutation in MYBPC3, encoding cardiac myosin-binding protein C (cMyBP-C). Here we used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from an HCM patient carrying a heterozygous c.

View Article and Find Full Text PDF

The discovery of RNA interference (RNAi) gave rise to the development of new nucleic acid-based technologies as powerful investigational tools and potential therapeutics. Mechanistic key details of RNAi in humans need to be deciphered yet, before such approaches take root in biomedicine and molecular therapy. We developed and validated an in silico-based model of siRNA-mediated RNAi in human cells in order to link in vitro-derived pre-steady state kinetic data with a quantitative and time-resolved understanding of RNAi on the cellular level.

View Article and Find Full Text PDF

Single nucleotide polymorphisms (SNPs) in microRNAs (miRNAs) or their target sites (miR-SNPs) within the 3'-UTR of mRNAs are increasingly thought to play a major role in pathological dysregulation of gene expression. Here, we studied the functional role of miR-SNPs on miRNA-mediated post-transcriptional regulation of gene expression. First, analyses were performed on a SNP located in the miR-155 target site within the 3'-UTR of the Angiotensin II type 1 receptor (AGTR1; rs5186, A > C) mRNA.

View Article and Find Full Text PDF

Despite the fact that non-viral nucleic acid delivery systems are generally considered to be less efficient than viral vectors, they have gained much interest in recent years due to their superior safety profile compared to their viral counterpart. Among these synthetic vectors are cationic polymers, branched dendrimers, cationic liposomes and cell-penetrating peptides (CPPs). The latter represent an assortment of fairly unrelated sequences essentially characterised by a high content of basic amino acids and a length of 10-30 residues.

View Article and Find Full Text PDF

Despite numerous encouraging reports in the literature, the efficiency of cell penetrating peptides (CPPs) in promoting cellular delivery of bioactive cargos is still limited. To extend our current understanding of the underlying limitations of such approaches, we performed quantitative uptake studies of different chemically modified (2'-O-methyl, LNA and PNA) steric block oligonucleotides, targeted against a mutated splice site inserted in a firefly luciferase reporter gene construct, applying the peptide carrier MPGalpha as a model system. The peptide formed stable noncovalent complexes with phosphorothioate oligonucleotide (PTO) and locked nucleic acid (LNA) modified oligonucleotides, whereas the neutral peptide nucleic acid (PNA) had to be hybridized to an unmodified DNA to allow for complex formation.

View Article and Find Full Text PDF

The enzymatic activities of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) are strictly correlated with the dimeric forms of this vital retroviral enzyme. Accordingly, the development of inhibitors targeting the dimerization of RT represents a promising alternative antiviral strategy. Based on mutational studies, we applied a structure-based ligand design approach generating pharmacophoric models of the large subunit connection subdomain to possibly identify small molecules from the ASINEX database, which might interfere with the RT subunit interaction.

View Article and Find Full Text PDF

Aptamers targeting reverse transcriptase (RT) from HIV-1 inhibit viral replication in vitro, presumably by competing with binding of the primer/template complex. This site is not targeted by the currently available small-molecule anti-HIV-1 RT inhibitors. We have identified SY-3E4, a small-molecule inhibitor of HIV-1 RT, by applying a screening assay that utilizes a reporter-ribozyme regulated by the anti-HIV-1 RT aptamer.

View Article and Find Full Text PDF

Cell-penetrating peptides (CPPs) have evolved as promising new tools to deliver nucleic acids into cells. So far, the majority of these delivery systems require a covalent linkage between carrier and cargo. To exploit the higher flexibility of a non-covalent strategy, we focused on the characterisation of a novel carrier peptide termed MPGalpha, which spontaneously forms complexes with nucleic acids.

View Article and Find Full Text PDF

Short oligonucleotides below 8-10 nt in length adopt relatively simple structures. Accordingly, they represent interesting and so far unexplored lead compounds as molecular tools and, potentially, for drug development as a rational improvement of efficacy seem to be less complex than for other classes of longer oligomeric nucleic acid. As a 'proof of concept', we describe the highly specific binding of the hexanucleotide UCGUGU (Hex-S3) to human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) as a model target.

View Article and Find Full Text PDF