Publications by authors named "Samuel Chaffron"

Life history traits influence marine species dispersal and habitat colonization. Medusozoans (jellyfish and siphonophores) exhibit diverse life cycles, evolved from an ancestral cycle alternating between a benthic polyp and a pelagic medusa. Despite their ecological importance, factors shaping medusozoan distribution remain poorly understood.

View Article and Find Full Text PDF

Background: Non-cyanobacteria diazotrophs (NCDs) are shown to dominate in surface waters shifting the long-held paradigm of cyanobacteria dominance. This raises fundamental questions on how these putative heterotrophic bacteria thrive in sunlit oceans. The absence of laboratory cultures of these bacteria significantly limits our ability to understand their behavior in natural environments and, consequently, their contribution to the marine nitrogen cycle.

View Article and Find Full Text PDF

Diatoms constitute one of the most diverse and ecologically important phytoplankton groups, yet their large-scale diversity patterns and drivers of abundance are unclear due to limited observations. Here, we utilize Tara Oceans molecular and morphological data, spanning pole to pole, to describe marine diatom diversity, abundance, and environmental adaptation and acclimation strategies. The dominance of diatoms among phytoplankton in terms of relative abundance and diversity is confirmed, and the most prevalent genera are Chaetoceros, Thalassiosira, Actinocyclus and Pseudo-nitzschia.

View Article and Find Full Text PDF

Background: A subgroup of patients with chronic pelvic pain exhibit organ sensitization of unknown origin and mechanism. Changes in microbiota composition in pelvic organs have been found to be associated with various pelvic pathologic conditions. Therefore, a comprehensive analysis of the gut and genitourinary microbiota composition and interactions in women with chronic pelvic pain may be key to understanding their involvement in the sensitization processes.

View Article and Find Full Text PDF

Marine plankton communities form intricate networks of interacting organisms at the base of the food chain, and play a central role in regulating ocean biogeochemical cycles and climate. However, predicting plankton community shifts in response to climate change remains challenging. While species distribution models are valuable tools for predicting changes in species biogeography under climate change scenarios, they generally overlook the key role of biotic interactions, which can significantly shape ecological processes and ecosystem responses.

View Article and Find Full Text PDF

The human gut microbiota comprises various microorganisms engaged in intricate interactions among themselves and with the host, affecting its health. While advancements in omics technologies have led to the inference of clear associations between microbiome composition and health conditions, we usually lack a causal and mechanistic understanding of these associations. For modeling mechanisms driving the interactions, we simulated the organism's metabolism using genome-scale metabolic models (GEMs).

View Article and Find Full Text PDF

Plastics are offering a new niche for microorganisms colonizing their surface, the so-called "plastisphere," in which diversity and community structure remain to be characterized and compared across ocean pelagic regions. Here, we compared the bacterial diversity of microorganisms living on plastic marine debris (PMD) and the surrounding free-living (FL) and organic particle-attached (PA) lifestyles sampled during the Tara expeditions in two of the most plastic polluted zones in the world ocean, i.e.

View Article and Find Full Text PDF

Marine microorganisms form complex communities of interacting organisms that influence central ecosystem functions in the ocean such as primary production and nutrient cycling. Identifying the mechanisms controlling their assembly and activities is a major challenge in microbial ecology. Here, we integrated Tara Oceans meta-omics data to predict genome-scale community interactions within prokaryotic assemblages in the euphotic ocean.

View Article and Find Full Text PDF

Microbial interactions are vital in maintaining ocean ecosystem function, yet their dynamic nature and complexity remain largely unexplored. Here, we use association networks to investigate possible ecological interactions in the marine microbiome among archaea, bacteria, and picoeukaryotes throughout different depths and geographical regions of the tropical and subtropical global ocean. Our findings reveal that potential microbial interactions change with depth and geographical scale, exhibiting highly heterogeneous distributions.

View Article and Find Full Text PDF

Despite being perennially frigid, polar oceans form an ecosystem hosting high and unique biodiversity. Various organisms show different adaptive strategies in this habitat, but how viruses adapt to this environment is largely unknown. Viruses of phyla Nucleocytoviricota and Mirusviricota are groups of eukaryote-infecting large and giant DNA viruses with genomes encoding a variety of functions.

View Article and Find Full Text PDF

Satellite remote sensing is a powerful tool to monitor the global dynamics of marine plankton. Previous research has focused on developing models to predict the size or taxonomic groups of phytoplankton. Here, we present an approach to identify community types from a global plankton network that includes phytoplankton and heterotrophic protists and to predict their biogeography using global satellite observations.

View Article and Find Full Text PDF

For decades, marine plankton have been investigated for their capacity to modulate biogeochemical cycles and provide fishery resources. Between the sunlit (epipelagic) layer and the deep dark waters, lies a vast and heterogeneous part of the ocean: the mesopelagic zone. How plankton composition is shaped by environment has been well-explored in the epipelagic but much less in the mesopelagic ocean.

View Article and Find Full Text PDF

Climate change is fundamentally altering marine and coastal ecosystems on a global scale. While the effects of ocean warming and acidification on ecology and ecosystem functions and services are being comprehensively researched, less attention is directed toward understanding the impacts of human-driven ocean salinity changes. The global water cycle operates through water fluxes expressed as precipitation, evaporation, and freshwater runoff from land.

View Article and Find Full Text PDF

Background: Microbial interactions are fundamental for Earth's ecosystem functioning and biogeochemical cycling. Nevertheless, they are challenging to identify and remain barely known. Omics-based censuses are helpful in predicting microbial interactions through the statistical inference of single (static) association networks.

View Article and Find Full Text PDF

Background: Increasing evidence suggests the beneficial effects of probiotics in irritable bowel syndrome (IBS), but little is known about how they can impact the gut microbiota. Our objective was to evaluate the effects of a multistrain probiotic on IBS symptoms, gut permeability and gut microbiota in patients with diarrhoea-predominant IBS (IBS-D).

Methods: Adults with IBS-D were enrolled in an open-label trial to receive a multistrain probiotic for 4 weeks.

View Article and Find Full Text PDF

The role of extracellular vesicles (EVs) from faeces (fEVs) and small circulating EVs (cEVs) in liver diseases such as non-alcoholic fatty diseases (NAFLD) and non-alcoholic steatohepatitis (NASH) has not been demonstrated. fEVs and cEVs of healthy donors, NAFLD and NASH patients were isolated and characterized. The effects of EVs were evaluated in intestinal, endothelial, Kupffer and stellate cells.

View Article and Find Full Text PDF

Background And Aims: Maternal diet plays a key role in preventing or contributing to the development of chronic diseases, such as obesity, allergy, and brain disorders. Supplementation of maternal diet with prebiotics has been shown to reduce the risk of food allergies and affect the intestinal permeability in offspring later in life. However, its role in modulating the development of other intestinal disorders, such as colitis, remains unknown.

View Article and Find Full Text PDF

Metagenome-assembled genomes (MAGs) represent individual genomes recovered from metagenomic data. MAGs are extremely useful to analyze uncultured microbial genomic diversity, as well as to characterize associated functional and metabolic potential in natural environments. Recent computational developments have considerably improved MAG reconstruction but also emphasized several limitations, such as the nonbinning of sequence regions with repetitions or distinct nucleotidic composition.

View Article and Find Full Text PDF

DNA viruses are increasingly recognized as influencing marine microbes and microbe-mediated biogeochemical cycling. However, little is known about global marine RNA virus diversity, ecology, and ecosystem roles. In this study, we uncover patterns and predictors of marine RNA virus community- and "species"-level diversity and contextualize their ecological impacts from pole to pole.

View Article and Find Full Text PDF

Major seasonal community reorganizations and associated biomass variations are landmarks of plankton ecology. However, the processes of plankton community turnover rates have not been fully elucidated so far. Here, we analyse patterns of planktonic protist community succession in temperate latitudes, based on quantitative taxonomic data from both microscopy counts (cells >10 μm) and ribosomal DNA metabarcoding (size fraction >3 μm, 18S rRNA gene) from plankton samples collected bimonthly over 8 years (2009-2016) at the SOMLIT-Astan station (Roscoff, Western English Channel).

View Article and Find Full Text PDF

Microbial life in soil is fueled by dissolved organic matter (DOM) that leaches from the litter layer. It is well known that decomposer communities adapt to the available litter source, but it remains unclear if they functionally compete or synergistically address different litter types. Therefore, we decomposed beech, oak, pine and grass litter from two geologically distinct sites in a lab-scale decomposition experiment.

View Article and Find Full Text PDF

Whereas DNA viruses are known to be abundant, diverse, and commonly key ecosystem players, RNA viruses are insufficiently studied outside disease settings. In this study, we analyzed ≈28 terabases of Global Ocean RNA sequences to expand Earth's RNA virus catalogs and their taxonomy, investigate their evolutionary origins, and assess their marine biogeography from pole to pole. Using new approaches to optimize discovery and classification, we identified RNA viruses that necessitate substantive revisions of taxonomy (doubling phyla and adding >50% new classes) and evolutionary understanding.

View Article and Find Full Text PDF

The role of the Arctic Ocean ecosystem in climate regulation may depend on the responses of marine microorganisms to environmental change. We applied genome-resolved metagenomics to 41 Arctic seawater samples, collected at various depths in different seasons during the Tara Oceans Polar Circle expedition, to evaluate the ecology, metabolic potential and activity of resident bacteria and archaea. We assembled 530 metagenome-assembled genomes (MAGs) to form the Arctic MAGs catalogue comprising 526 species.

View Article and Find Full Text PDF

A Gram-stain-negative, obligatory anaerobic spirochaete (RCC2812) was isolated from a faecal sample obtained from an individual residing in a remote Amazonian community in Peru. The bacterium showed highest 16S rRNA gene sequence similarity to the pig intestinal spirochete (89.48 %).

View Article and Find Full Text PDF

Marine plankton form complex communities of interacting organisms at the base of the food web, which sustain oceanic biogeochemical cycles and help regulate climate. Although global surveys are starting to reveal ecological drivers underlying planktonic community structure and predicted climate change responses, it is unclear how community-scale species interactions will be affected by climate change. Here, we leveraged Oceans sampling to infer a global ocean cross-domain plankton co-occurrence network-the community interactome-and used niche modeling to assess its vulnerabilities to environmental change.

View Article and Find Full Text PDF