Transcription Termination Factor 1 (TTF1) is a multifunctional mammalian protein with vital roles in various cellular processes, including Pol I-mediated transcription initiation and termination, pre-rRNA processing, chromatin remodelling, DNA damage repair, and polar replication fork arrest. It comprises two distinct functional regions; the N-terminal regulatory region (1-445 aa), and the C-terminal catalytic region (445-859 aa). The Myb domain located at the C-terminal region is a conserved DNA binding domain spanning from 550 to 732 aa (183 residues).
View Article and Find Full Text PDFCervical cancer (CC) is the 4th most leading cause of death among women worldwide, and if diagnosed in late stages the treatment options are almost negligible. 99% of CC is caused by high-risk human papilloma viruses (HR-HPV). Upon integration into human genome, the encoded viral proteins mis-regulate various onco-suppressors and checkpoint factors including cell cycle regulators.
View Article and Find Full Text PDFThe mammalian transcription termination factor 1 (TTF1) is an essential protein that plays diverse cellular physiological functions like transcription regulation (both initiation and termination), replication fork blockage, chromatin remodeling, and DNA damage repair. Hence, understanding the structure and mechanism conferred by its variable conformations is important. However, so far, almost nothing is known about the structure of either the full-length protein or any of its domains in isolation.
View Article and Find Full Text PDFJ Cancer Res Ther
November 2022
Introduction: Recent techniques available for the detection of cervical cancer (CC) are highly invasive and costly, which makes it a rate-limiting step toward early diagnosis of this fatal disease. Evaluation of circulating cell-free DNA (ccfDNA) through liquid biopsy is a minimally invasive and cost-effective method that may serve as a unique tumor marker for early detection, treatment monitoring, the status of residual disease, and distant tumor metastasis in CC patients.
Materials And Methods: In this study, initially, ccfDNA was measured in serum samples from 11 histopathologically proven cervix carcinoma patients and 8 controls.
J Biomol Struct Dyn
August 2022
Transcription Termination Factor 1 (TTF1) is an essential mammalian protein that regulates transcription, replication fork arrest, DNA damage repair, chromatin remodelling etc. TTF1 interacts with numerous cellular proteins to regulate various cellular phenomena which play a crucial role in maintaining normal cellular physiology, and dysregulation of this protein has been reported to induce oncogenic transformation of the cells. However, despite its key role in many cellular processes, the complete structure of human TTF1 has not been elucidated to date, neither experimentally nor computationally.
View Article and Find Full Text PDFMicroRNAs have emerged as an important regulator of cell cycle and various other cellular processes. Aberration in microRNAs has been linked with development of several cancers and other diseases but still very little is known about the mechanism by which they regulate these cellular events. High risk human papilloma virus (HR HPV) is the causative agent of 99% of cervical cancer cases which attenuates multiple tumor suppressors and checkpoint factors of the host cell.
View Article and Find Full Text PDF