Publications by authors named "Samah Jamal Fodeh"

Objectives: Understand the continuity and changes in headache not-otherwise-specified (NOS), migraine, and post-traumatic headache (PTH) diagnoses after the transition from ICD-9-CM to ICD-10-CM in the Veterans Health Administration (VHA).

Background: Headache is one of the most commonly diagnosed chronic conditions managed within primary and specialty care clinics. The VHA transitioned from ICD-9-CM to ICD-10-CM on October-1-2015.

View Article and Find Full Text PDF

Background: Opioid misuse (OM) is a major health problem in the United States, and can lead to addiction and fatal overdose. We sought to employ natural language processing (NLP) and machine learning to categorize Twitter chatter based on the motive of OM.

Materials And Methods: We collected data from Twitter using opioid-related keywords, and manually annotated 6988 tweets into three classes-No-OM, Pain-related-OM, and Recreational-OM-with the No-OM class representing tweets indicating no use/misuse, and the Pain-related misuse and Recreational-misuse classes representing misuse for pain or recreation/addiction.

View Article and Find Full Text PDF

Gene ontology (GO) provides a representation of terms and categories used to describe genes and their molecular functions, cellular components and biological processes. GO has been the standard for describing the functions of specific genes in different model organisms. GO annotation, or the tagging of genes with GO terms, has mostly been a manual and time-consuming curation process.

View Article and Find Full Text PDF

Pain is a significant public health problem, affecting millions of people in the USA. Evidence has highlighted that patients with chronic pain often suffer from deficits in pain care quality (PCQ) including pain assessment, treatment, and reassessment. Currently, there is no intelligent and reliable approach to identify PCQ indicators inelectronic health records (EHR).

View Article and Find Full Text PDF

Introduction: Health care organizations working to eliminate preventable harm and to improve patient safety must have robust programs to collect and to analyze data on adverse events in order to use the information to affect improvement. Such adverse event reporting systems are based on frontline personnel reporting issues that arise in the course of their daily work. Limitations in how existing software systems handle these reports mean that use of this potentially rich information is resource intensive and prone to variable results.

View Article and Find Full Text PDF

The rapidly growing availability of electronic biomedical data has increased the need for innovative data mining methods. Clustering in particular has been an active area of research in many different application areas, with existing clustering algorithms mostly focusing on one modality or representation of the data. Complementary ensemble clustering (CEC) is a recently introduced framework in which Kmeans is applied to a weighted, linear combination of the coassociation matrices obtained from separate ensemble clustering of different data modalities.

View Article and Find Full Text PDF

Data Clustering has been an active area of research in many different application areas, with existing clustering algorithms mostly focusing on partitioning one modality or representation of the data. In this study, we delineate and demonstrate a new, enhanced data clustering approach whose innovation is its exploitation of multiple data modalities. We propose BI-NMF, a bi-modal clustering approach based on Non Negative Matrix Factorization (NMF) that clusters two differing data modalities simultaneously.

View Article and Find Full Text PDF