Publications by authors named "Sally Fujiyama"

Activation of ribosomal RNA (rRNA) synthesis is pivotal during cell growth and proliferation, but its aberrant upregulation may promote tumorigenesis. Here, we demonstrate that the candidate oncoprotein, LYAR, enhances ribosomal DNA (rDNA) transcription. Our data reveal that LYAR binds the histone-associated protein BRD2 without involvement of acetyl-lysine-binding bromodomains and recruits BRD2 to the rDNA promoter and transcribed regions via association with upstream binding factor.

View Article and Find Full Text PDF

Mature osteoclasts are multinuclear, macrophage-like cells derived from hematopoietic stem cells in the bone marrow. Several transcription factors regulating osteoclast differentiation have been identified. However, the molecular basis of transcriptional regulation in osteoclasts at epigenetic levels is largely unknown.

View Article and Find Full Text PDF

Chromatin reorganization is essential for transcriptional control by sequence-specific transcription factors. However, the molecular link between transcriptional control and chromatin reconfiguration remains unclear. By colocalization of the nuclear ecdysone receptor (EcR) on the ecdysone-induced puff in the salivary gland, Drosophila DEK (dDEK) was genetically identified as a coactivator of EcR in both insect cells and intact flies.

View Article and Find Full Text PDF

Histone acetyl transferases (HATs) play a crucial role in eukaryotes by regulating chromatin architecture and locus-specific transcription. The GCN5 HAT was identified as a subunit of the SAGA (Spt-Ada-Gcn5-Acetyltransferase) multiprotein complex. Vertebrate cells express a second HAT, PCAF, that is 73% identical to GCN5.

View Article and Find Full Text PDF

Vitamin D plays an important role in regulating bone and calcium metabolism. The actions of vitamin D are mediated through the nuclear vitamin D receptor (VDR), and gene disruption of the VDR in mice causes skeletal disorders. However, the precise role of the VDR in each stage of osteoblastogenesis is not well understood.

View Article and Find Full Text PDF

Steroid hormones and their cognate nuclear receptors exert a wide spectrum of biological actions through regulation of transcriptional and posttranscriptional processes. However, the underlying molecular mechanism by which steroid hormones control posttranscriptional processes is largely unknown. We now report that estrogen receptor alpha (ERalpha) inhibits the maturation of a particular microRNA (miRNA) and thereby stabilizes the mRNA of an ERalpha target gene through the 3'UTR.

View Article and Find Full Text PDF

Epigenetic modifications at the histone level affect gene regulation in response to extracellular signals. However, regulated epigenetic modifications at the DNA level, especially active DNA demethylation, in gene activation are not well understood. Here we report that DNA methylation/demethylation is hormonally switched to control transcription of the cytochrome p450 27B1 (CYP27B1) gene.

View Article and Find Full Text PDF

Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder caused by a polyglutamine repeat (polyQ) expansion within the human androgen receptor (AR). Unlike other neurodegenerative diseases caused by abnormal polyQ expansion, the onset of SBMA depends on androgen binding to mutant human polyQ-AR proteins. This is also observed in Drosophila eyes ectopically expressing the polyQ-AR mutants.

View Article and Find Full Text PDF

Ligand-bound nuclear receptors (NR) activate transcription of the target genes. This activation is coupled with histone modifications and chromatin remodeling through the function of various coregulators. However, the nature of the dependence of a NR coregulator action on the presence of the chromatin environment at the target genes is unclear.

View Article and Find Full Text PDF

Abnormal polyglutamine (polyQ) expansion in the N-terminal domain of the human androgen receptor (hAR) is known to cause spinobulbar muscular atrophy (SBMA), a hereditary human neurodegenerative disorder. To explore the molecular mechanisms of neurodegeneration in SBMA, we genetically screened modulators of neurodegeneration in a Drosophila SBMA experimental model system. We identified hoip as an accelerator of polyQ-induced neurodegeneration.

View Article and Find Full Text PDF

Although several murine mAbs that have been humanized became useful therapeutic agents against a few malignancies, therapeutic Abs are not yet available for the majority of the human cancers because of our lack of knowledge of which antigens (Ags) can become useful targets. In the present study we established a procedure for comprehensive identification of such Ags through the extensive isolation of human mAbs that may become therapeutic. Using the phage-display Ab library we isolated a large number of human mAbs that bind to the surface of tumor cells.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) control cell proliferation, differentiation and fate through modulation of gene expression by partially base-pairing with target mRNA sequences. Drosha is an RNase III enzyme that is the catalytic subunit of a large complex that cleaves pri-miRNAs with distinct structures into pre-miRNAs. Here, we show that both the p68 and p72 DEAD-box RNA helicase subunits in the mouse Drosha complex are indispensable for survival in mice, and both are required for primary miRNA and rRNA processing.

View Article and Find Full Text PDF

Proteomic technologies powered by advancements in mass spectrometry and bioinformatics and coupled with accumulated genome sequence data allow a comprehensive study of cell function through large-scale and systematic protein identifications of protein constituents of the cell and tissues, as well as of multi-protein complexes that carry out many cellular function in a higher-order network in the cell. One of the most extensively analyzed cellular functions by proteomics is the production of ribosome, the protein-synthesis machinery, in the nucle(ol)us--the main site of ribosome biogenesis. The use of tagged proteins as affinity bait, coupled with mass spectrometric identification, enabled us to isolate synthetic intermediates of ribosomes that might represent snapshots of nascent ribosomes at particular stages of ribosome biogenesis and to identify their constituents--some of which showed dynamic changes for association with the intermediates at various stages of ribosome biogenesis.

View Article and Find Full Text PDF

Human parvulin (hParvulin; Par14/EPVH) belongs to the third family of peptidylprolyl cis-trans isomerases that exhibit an enzymatic activity of interconverting the cis-trans conformation of the prolyl peptide bond, and shows sequence similarity to the regulator enzyme for cell cycle transitions, human Pin1. However, the cellular function of hParvulin is entirely unknown. Here, we demonstrate that hParvulin associates with the preribosomal ribonucleoprotein (pre-rRNP) complexes, which contain preribosomal RNAs, at least 26 ribosomal proteins, and 26 trans-acting factors involved in rRNA processing and assembly at an early stage of ribosome biogenesis.

View Article and Find Full Text PDF