Sensors (Basel)
August 2025
Diabetic retinopathy (DR), a leading cause of vision loss worldwide, poses a critical challenge to healthcare systems due to its silent progression and the reliance on labor-intensive, subjective manual screening by ophthalmologists, especially amid a global shortage of eye care specialists. Addressing the pressing need for scalable, objective, and interpretable diagnostic tools, this work introduces RetinoDeep-deep learning frameworks integrating hybrid architectures and explainable AI to enhance the automated detection and classification of DR across seven severity levels. Specifically, we propose four novel models: an EfficientNetB0 combined with an SPCL transformer for robust global feature extraction; a ResNet50 ensembled with Bi-LSTM to synergize spatial and sequential learning; a Bi-LSTM optimized through genetic algorithms for hyperparameter tuning; and a Bi-LSTM with SHAP explainability to enhance model transparency and clinical trustworthiness.
View Article and Find Full Text PDF