The precision measurement of the tritium β-decay spectrum performed by the KATRIN experiment provides a unique way to search for general neutrino interactions (GNIs). All theoretically allowed GNI terms at dimension 6 involving neutrinos are incorporated into a low-energy effective field theory, and can be identified by specific signatures in the measured tritium β spectrum. In this Letter an effective description of the impact of GNIs on the β spectrum is formulated and the first constraints on the effective GNI parameters are derived based on the 4×10^{6} electrons collected in the second measurement campaign of KATRIN in 2019.
View Article and Find Full Text PDFThat neutrinos carry a nonvanishing rest mass is evidence of physics beyond the Standard Model of elementary particles. Their absolute mass holds relevance in fields from particle physics to cosmology. We report on the search for the effective electron antineutrino mass with the KATRIN experiment.
View Article and Find Full Text PDFTo advance high-energy atmospheric physics, studying atmospheric electric fields (AEF) and cosmic ray fluxes as an interconnected system is crucial. At Mt. Argats, simultaneous measurements of particle fluxes, electric fields, weather conditions, and lightning locations have significantly enhanced the validation of models that describe the charge structures of thunderclouds and the mechanics of internal electron accelerators.
View Article and Find Full Text PDFWe report on the direct search for cosmic relic neutrinos using data acquired during the first two science campaigns of the KATRIN experiment in 2019. Beta-decay electrons from a high-purity molecular tritium gas source are analyzed by a high-resolution MAC-E filter around the end point at 18.57 keV.
View Article and Find Full Text PDF