Publications by authors named "Ryan D Rose"

The initial setting of telomere length during early life in each individual has a major influence on lifetime risk of aging-associated diseases; however there is limited knowledge of biological signals that regulate inheritance of telomere length, and whether it is modifiable is not known. We now show that when mitochondrial activity is disrupted in mouse zygotes, via exposure to 20% O or rotenone, telomere elongation between the 8-cell and blastocyst stage is impaired, with shorter telomeres apparent in the pluripotent Inner Cell Mass (ICM) and persisting after organogenesis. Identical defects of elevated mtROS in zygotes followed by impaired telomere elongation, occurred with maternal obesity or advanced age.

View Article and Find Full Text PDF

Purpose: Semen manipulation for assisted reproductive technology (ART) causes spermatozoa damage; thus, we investigated the potential of the novel therapeutic BGP-15 to preserve sperm quality during semen washing prior to insemination.

Methods: Donated human ejaculates (N = 40), with or without 10 µM BGP-15, were analyzed for sperm motility, DNA fragmentation, and oxidation. Seminal plasma was removed using different clinical sperm selection methods: simple wash, swim-up, or density gradient centrifugation (DGC), followed by assessment for sperm motility, mitochondrial ROS (mtROS), mitochondrial membrane potential (MMP), and DNA fragmentation and oxidation.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated whether BGP-15 can enhance sperm quality and protect against cell damage in both mouse and human sperm.
  • Mice sperm were treated with BGP-15 and assessed for quality, with findings showing improved motility and reduced DNA oxidation in older specimens.
  • Human sperm exposed to oxidative stress also benefited from BGP-15, with the treatment improving sperm parameters, reinforcing its potential role in fertility treatments.
View Article and Find Full Text PDF

Study Question: Is oocyte developmental competence associated with changes in granulosa cell (GC) metabolism?

Summary Answer: GC metabolism is regulated by the LH surge, altered by obesity and reproductive aging, and, in women, specific metabolic profiles are associated with failed fertilization versus increased blastocyst development.

What Is Known Already: The cellular environment in which an oocyte matures is critical to its future developmental competence. Metabolism is emerging as a potentially important factor; however, relative energy production profiles between GCs and cumulus cells and their use of differential substrates under normal in vivo ovulatory conditions are not well understood.

View Article and Find Full Text PDF

The prevalence of obesity in adults worldwide, and specifically in women of reproductive age, is concerning given the risks to fertility posed by the increased risk of type 2 diabetes, metabolic syndrome, and other noncommunicable diseases. Obesity has a multi-systemic impact in female physiology that is characterized by the presence of oxidative stress, lipotoxicity, and the activation of pro-inflammatory pathways, inducing tissue-specific insulin resistance and ultimately conducive to abnormal ovarian function. A higher body mass is linked to Polycystic Ovary Syndrome, dysregulated menstrual cycles, anovulation, and longer time to pregnancy, even in ovulatory women.

View Article and Find Full Text PDF

Study Question: Can label-free, non-invasive optical imaging by hyperspectral autofluorescence microscopy discern between euploid and aneuploid cells within the inner cell mass (ICM) of the mouse preimplantation embryo?

Summary Answer: Hyperspectral autofluorescence microscopy enables discrimination between euploid and aneuploid ICM in mouse embryos.

What Is Known Already: Euploid/aneuploid mosaicism affects up to 17.3% of human blastocyst embryos with trophectoderm biopsy or spent media currently utilized to diagnose aneuploidy and mosaicism in clinical in vitro fertilization.

View Article and Find Full Text PDF

Purpose: Oxygen is vital for oocyte maturation; however, oxygen regulation within ovarian follicles is not fully understood. Hemoglobin is abundant within the in vivo matured oocyte, indicating potential function as an oxygen regulator. However, hemoglobin is significantly reduced following in vitro maturation (IVM).

View Article and Find Full Text PDF

Research Question: Does Embryogen®/BlastGen™ culture medium improve live birth rates compared with standard culture medium for women undergoing IVF and intracytoplasmic sperm injection (ICSI) with poor prognosis.

Design: Randomized clinical trial. A total of 100 couples undergoing IVF/ICSI were randomly allocated to having their inseminated oocytes incubated in either Embryogen®/BlastGen™ sequential culture media or standard Cleavage/Blastocyst sequential culture media for 5 days (ClinicalTrials.

View Article and Find Full Text PDF

Oocytes acquire developmental competence with progressive folliculogenesis. Cumulus oocyte complexes (COCs) from small antral follicles have inherent low competence and are poorly responsive to amphiregulin (AREG) which normally mediates oocyte maturation and ovulation. Using low competence porcine COCs, in an in vitro AREG-induced oocyte maturation system, the combined exposure to N(6),2'-O-dibutyryladenosine 3':5' cyclic monophosphate (cAMP) and bone morphogenetic protein 15 (B15) and growth differentiation factor 9 (G9) was necessary to enhance the rate of oocyte meiotic maturation and blastocyst formation.

View Article and Find Full Text PDF

Physical removal of mammalian cumulus-oocyte complexes (COCs) from ovarian follicles results in spontaneous resumption of meiosis, largely because of a decrease in cAMP concentrations, causing asynchrony between cytoplasmic and nuclear maturation and decreased oocyte developmental competence. The aim of this study was to modulate cAMP concentrations within ovine COCs to delay spontaneous nuclear maturation and improve developmental competence. Abattoir-derived sheep COCs were cultured for 2 hours (pre-IVM) in 100 μM forskolin (FSK) plus 500 μM 3-isobutyl-1-methylxanthine (IBMX).

View Article and Find Full Text PDF