Publications by authors named "Ryan D Day"

Background: The wild stocks of Pinctada maxima pearl oysters found off the coast of northern Australia are of critical importance for the sustainability of Australia's pearling industry. Locations inhabited by pearl oysters often have oil and gas reserves in the seafloor below and are therefore potentially subjected to seismic exploration surveys. The present study assessed the impact of a simulated commercial seismic survey on the transcriptome of pearl oysters.

View Article and Find Full Text PDF

Cephalopods are economically and ecologically important species across the world, yet information linking physiological stress and associated immunological responses is limited in the current literature. Here, the effects of exhaustive exercise in a holobenthic octopus species, Octopus pallidus, were examined by evaluating immunological parameters. In whole haemolymph, the pH and refractive index were measured.

View Article and Find Full Text PDF

Cephalopods receive a great deal of attention due to their socioeconomically important fisheries and aquaculture industries as well their unique biological features. However, basic information about their physiological responses under stress conditions is lacking. This study investigated the impact of a simple stressor, exercise to exhaustion, on the activity levels of antioxidant enzymes and the concentrations of molecules involved in oxidative stress response in the pale octopus (Octopus pallidus).

View Article and Find Full Text PDF
Article Synopsis
  • Scientists use loud sounds to find oil and gas under the ocean, which might harm sea creatures like the silverlip pearl oyster.
  • They tested around 11,000 oysters for four days during a seismic survey and checked their survival and pearl quality over two years.
  • While some oysters showed lower survival and fewer pearls, most did fine, so they didn't find strong proof that the loud sounds hurt the oysters.
View Article and Find Full Text PDF

Anthropogenic aquatic noise is recognised as an environmental pollutant with the potential to negatively affect marine organisms. Seismic surveys, used to explore subseafloor oil reserves, are a common source of aquatic noise that have garnered attention due to their intense low frequency inputs and their frequent spatial overlap with coastal fisheries. Commercially important Southern Rock Lobster (Jasus edwardsii) adults have previously shown sensitivity to signals from a single seismic air gun.

View Article and Find Full Text PDF

The cavin proteins are essential for caveola biogenesis and function. Here, we identify a role for the muscle-specific component, Cavin4, in skeletal muscle T-tubule development by analyzing two vertebrate systems, mouse and zebrafish. In both models, Cavin4 localized to T-tubules, and loss of Cavin4 resulted in aberrant T-tubule maturation.

View Article and Find Full Text PDF

Staotcysts, the mechanosensory organs common to many marine invertebrates, have shown sensitivity to aquatic noise. Previously, rock lobsters (Jasus edwardsii) from a remote site with little exposure to anthropogenic noise incurred persistent damage to the statocyst and righting reflex following exposure to seismic air gun signals. Here, J.

View Article and Find Full Text PDF

The effects of anthropogenic aquatic noise on marine invertebrates are poorly understood. We investigated the impact of seismic surveys on the righting reflex and statocyst morphology of the palinurid rock lobster, Jasus edwardsii, using field-based exposure to air gun signals. Following exposure equivalent to a full-scale commercial assay passing within 100-500 m, lobsters showed impaired righting and significant damage to the sensory hairs of the statocyst.

View Article and Find Full Text PDF

Lobsters are fished world-wide due to their status as a high value, luxury seafood. A large proportion of the product is sold via live export, with lobsters subject to a range of stressors during holding post-capture. Improving the current understanding of the immune response to these stressors assists in improving efficiency and reducing loss in the chain between capture and consumption.

View Article and Find Full Text PDF

Seismic surveys map the seabed using intense, low-frequency sound signals that penetrate kilometers into the Earth's crust. Little is known regarding how invertebrates, including economically and ecologically important bivalves, are affected by exposure to seismic signals. In a series of field-based experiments, we investigate the impact of exposure to seismic surveys on scallops, using measurements of physiological and behavioral parameters to determine whether exposure may cause mass mortality or result in other sublethal effects.

View Article and Find Full Text PDF

Zooplankton underpin the health and productivity of global marine ecosystems. Here we present evidence that suggests seismic surveys cause significant mortality to zooplankton populations. Seismic surveys are used extensively to explore for petroleum resources using intense, low-frequency, acoustic impulse signals.

View Article and Find Full Text PDF

There is a critical knowledge gap regarding the impacts of seismic air gun signals on the physiology of adult crustaceans. We conducted four controlled field experiments to examine the impact of seismic acoustic signals on spiny lobster, Jasus edwardsii. Seismic air gun exposure suppressed total haemocyte count (THC) for up to 120days post-exposure, suggesting a chronic negative impact of immune competency.

View Article and Find Full Text PDF

Marine seismic surveys are used to explore for sub-seafloor oil and gas deposits. These surveys are conducted using air guns, which release compressed air to create intense sound impulses, which are repeated around every 8-12 seconds and can travel large distances in the water column. Considering the ubiquitous worldwide distribution of seismic surveys, the potential impact of exposure on marine invertebrates is poorly understood.

View Article and Find Full Text PDF

We explored the integrated role of dietary specialization and feeding periodicity on the response of the gastrointestinal tract of teleosts fishes to short-term (7-10 days) fasting and refeeding. Fasted and fed herbivorous grass carp (Ctenopharyngodon idella), omnivorous channel catfish (Ictalurus punctatus), and carnivorous largemouth bass (Micropterus salmoides) were compared for digestive organ masses, intestinal morphology, gastrointestinal pH, and the specific activities and total intestinal capacities of the intestinal hydrolases aminopeptidase (APN) and maltase and intestinal nutrient transporters. All three species experience intestinal hypertrophy with feeding as noted by significant increases in enterocyte dimensions.

View Article and Find Full Text PDF

The lack of a stomach is not uncommon amongst teleost fishes, yet our understanding of this reductive specialisation is lacking. The absence of a stomach does not restrict trophic preference, resulting in fishes with very similar alimentary morphology capable of digesting differing diets. We examined the digestive biochemistry of four beloniform fishes: two herbivorous halfbeaks (Hemiramphidae) and two carnivorous needlefish (Belonidae) to determine how these fishes digest their respective diets with their simple, short gut.

View Article and Find Full Text PDF

Most young fishes lack the ability to function as herbivores, which has been attributed to two aspects of the digestive system: elevated nitrogen demand and a critical gut capacity. We compared the digestive morphology and biochemistry of two size classes of the marine herbivore Hyporhamphus regularis ardelio, pre-ontogenetic trophic shift (pre-OTS, <100mm) and post-ontogenetic trophic shift (post-OTS, >100mm), to determine what limits the onset of herbivory and how their digestive processes fit with current models of digestion. Two gut-somatic indices comparing gut length to body length (relative gut length) and body mass (Zihler's Index) demonstrated a significant decrease (RGL 0.

View Article and Find Full Text PDF

Belonidae are unusual in that they are carnivorous but lack a stomach and have a straight, short gut. To develop a functional morphological model for this unusual system the gut contents and alimentary tract morphology of Tylosurus gavialoides and Strongylura leiura ferox were investigated. The posterior orientation of the majority of the pharyngeal teeth supports the swallowing of whole large prey, but not their mastication.

View Article and Find Full Text PDF

To assess how tooth microstructure and composition might facilitate the pharyngeal mill mechanism of halfbeaks, apatite structure and iron content were determined by scanning electron microscopy and energy dispersive X-ray analysis for Hyporhamphus regularis ardelio, Arrhamphus sclerolepis krefftii, and Hemiramphus robustus. Iron was present in developing teeth and was concentrated along the shearing edge of spatulate incisiform teeth, which dominate the occlusive wear zone in all three species. A model based on tooth structure and wear rate is proposed to explain how halfbeaks maintain a fully functional occlusion zone throughout growth and consequent tooth addition and replacement.

View Article and Find Full Text PDF

A common feature of animal locomotion is its organization into gaits with distinct patterns of movement and propulsor use for specific speeds. In terrestrial vertebrates, limb gaits have been extensively studied in diverse taxa and gait transitions have been shown to provide efficient locomotion across a wide range of speeds. In contrast, examination of gaits in fishes has focused on axial gaits and the transition between synchronous paired fin locomotion and axial propulsion.

View Article and Find Full Text PDF