Publications by authors named "Ruth Eytner"

Adeno-associated virus (AAV) vectors currently represent the most attractive platform for viral gene therapy and are also valuable research tools to study gene function or establish disease models. Consequently, many academic labs, core facilities, and biotech/pharma companies meanwhile produce AAVs for research and early clinical development. Whereas fast, universal protocols for vector purification (downstream processing) are available, AAV production using adherent HEK-293 cells still requires time-consuming passaging and extensive culture expansion before transfection.

View Article and Find Full Text PDF

More than 60% of conventional drugs are derived from natural compounds, some of the most effective pharmaceuticals (e.g. aspirin, quinine and various antibiotics) originate from plants or microbes, and large numbers of potentially valuable natural substances remain to be discovered.

View Article and Find Full Text PDF

Many traditional healing plants successfully passed several hundred years of empirical testing against specific diseases and thereby demonstrating that they are well tolerated in humans. Although quite a few ethno-pharmacological plants are applied against a variety of conditions there are still numerous plants that have not been cross-tested in diseases apart from the traditional applications. Herein we demonstrate the anti-neoplastic potential of two healing plants used by the Maya of the Guatemala/Belize area against severe inflammatory conditions such as neuritis, rheumatism, arthritis, coughs, bruises and tumours.

View Article and Find Full Text PDF

Inflammatory processes are associated with the rapid migration of dendritic cells (DCs) to regional lymph nodes and depletion of these potent antigen-presenting cells (APCs) from the inflamed tissue. This study examined whether sites of cutaneous inflammation can be repopulated with DCs from a pool of immature DCs circulating in the blood. In adoptive transfer experiments with ex vivo-generated radioactively labeled primary bone marrow-derived DCs injected into mice challenged by an allergic contact dermatitis reaction, immature DCs were actively recruited from the blood to sites of cutaneous inflammation, whereas mature DCs were not.

View Article and Find Full Text PDF