Publications by authors named "Ruchit Panchal"

Vector control remains an important strategy worldwide to prevent human infection with pathogens transmitted by arthropods. Vector control strategies rely on accurate identification of vector taxa along with vector-specific biological indicators such as feeding ecology, infection prevalence and insecticide resistance. Multiple 'DNA barcoding' protocols have been published over the past several decades to support these applications, generally relying on informal manual approaches such as BLAST to assign taxonomic identity to the resulting sequences.

View Article and Find Full Text PDF

Missense variants can have a range of functional impacts depending on factors such as the specific amino acid substitution and location within the gene. To interpret their deleteriousness, studies have sought to identify regions within genes that are specifically intolerant of missense variation . Here, we leverage the patterns of rare missense variation in 125,748 individuals in the Genome Aggregation Database (gnomAD) against a null mutational model to identify transcripts that display regional differences in missense constraint.

View Article and Find Full Text PDF

Multiplexed PCR amplicon sequencing (AmpSeq) is an increasingly popular application for cost-effective monitoring of threatened species and managed wildlife populations, and shows strong potential for the genomic epidemiology of infectious disease. AmpSeq data from infectious microbes can inform disease control in multiple ways, such as by measuring drug resistance marker prevalence, distinguishing imported from local cases, and determining the effectiveness of therapeutics. We describe the design and comparative evaluation of two new AmpSeq assays for Plasmodium falciparum malaria parasites: a four-locus panel ("4CAST") composed of highly diverse antigens, and a 129-locus panel ("AMPLseq") composed of drug resistance markers, highly diverse loci for inferring relatedness, and a locus to detect Plasmodium vivax co-infection.

View Article and Find Full Text PDF

We have developed a personalized vaccine whereby patient derived leukemia cells are fused to autologous dendritic cells, evoking a polyclonal T cell response against shared and neo-antigens. We postulated that the dendritic cell (DC)/AML fusion vaccine would demonstrate synergy with checkpoint blockade by expanding tumor antigen specific lymphocytes that would provide a critical substrate for checkpoint blockade mediated activation. Using an immunocompetent murine leukemia model, we examined the immunologic response and therapeutic efficacy of vaccination in conjunction with checkpoint blockade with respect to leukemia engraftment, disease burden, survival and the induction of tumor specific immunity.

View Article and Find Full Text PDF