Publications by authors named "Roozbeh Abidnejad"

This study presents cellulose-based foams reinforced with biochar and integrated with polyethylene glycol (PEG)-based phase change materials (PCMs) to enhance thermal energy storage and photothermal performance. The foams were fabricated using an energy-efficient, non-freeze-drying method, leveraging cellulose's inherent porosity and structural integrity to create a sustainable and scalable material platform. The optimized cellulose foams exhibited a well-balanced combination of high porosity (85 %), low density (66 kg·m), and minimal shrinkage (5 %), ensuring stability across multiple applications.

View Article and Find Full Text PDF

Triply periodic minimal surface (TPMS) scaffolds are gaining attention in tissue engineering due to their continuous and interconnected porous architecture. In this study, three TPMS geometries-Gyroid, Diamond, and I-WP-were fabricated from polylactic acid (PLA) using fused deposition modeling (FDM), with all scaffolds designed to maintain the same overall porosity. Scaffold characterization included scanning electron microscopy (SEM), microcomputed tomography (micro-CT), compressive mechanical testing, and surface wettability analysis.

View Article and Find Full Text PDF

The integration of sustainable materials into additive manufacturing is critical for advancing environmentally responsible technologies. In this study, we demonstrate a novel approach to enhancing digital light processing (DLP) 3D printing resins by incorporating octenylsuccinic anhydride (OSA)-modified cellulose fillers-specifically, microcrystalline cellulose (Avicel-PH) and cellulose nanocrystals (CNC-PH). This is the first comparative investigation of these two hydrophobized cellulose types as bio-based reinforcements in DLP resins.

View Article and Find Full Text PDF

In response to growing environmental concerns, this study explores the potential of polyamide 1010 (PA1010) and biochar biocomposites as a sustainable solution in polymer engineering. The research addresses the gap in reinforcing biocomposites with biochar, demonstrating enhanced physical properties and reduced environmental impact. Scanning electron microscopy (SEM) revealed excellent biochar dispersion and strong adhesion with the PA1010 matrix.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores how incorporating cotton and polyester fibers into polypropylene (PP) composites can improve their mechanical, thermal, and rheological properties, aiming for durable materials.
  • The research finds that a balanced mix of cotton and polyester fibers maximizes tensile strength and stiffness, with different coupling agents influencing fiber-matrix adhesion and overall performance.
  • The use of recycled textile fibers not only bolsters thermal resistance and structural stability but also presents a sustainable solution that supports the circular economy by repurposing textile waste in composite manufacturing.
View Article and Find Full Text PDF
Article Synopsis
  • Lightweight, energy-efficient building materials like polymeric and composite foams have fire risks due to their combustibility and toxic emissions.
  • This study compares hybrid systems of nanofiber-reinforced silica-based Pickering foams to conventional polyurethane foams in terms of fire retardancy and gas release.
  • Findings show that the new foams enhance thermal insulation and fire safety while supporting sustainability by lowering energy use in buildings.
View Article and Find Full Text PDF

Soil quality is one of the main limiting factor in the development of the food sector in arid areas, mainly due to its poor mechanics and lack of water retention. Soil's organic carbon is nearly absent in arid soils, though it is important for water and nutrient transport, to soil mechanics, to prevent erosion, and as a long-term carbon sink. In this study, we evaluate the potential benefits that are brought to inert sand by the incorporation of a range of, mainly, cellulosic networks in their polymeric or structured (fiber) forms, analogously to those found in healthy soils.

View Article and Find Full Text PDF

Direct ink writing (DIW) stands as a pioneering additive manufacturing technique that holds transformative potential in the field of hydrogel fabrication. This innovative approach allows for the precise deposition of hydrogel inks layer by layer, creating complex three-dimensional structures with tailored shapes, sizes, and functionalities. By harnessing the versatility of hydrogels, DIW opens up possibilities for applications spanning from tissue engineering to soft robotics and wearable devices.

View Article and Find Full Text PDF

The demand for biodegradable materials across various industries has recently surged due to environmental concerns and the need for the adoption of renewable materials. In this context, lignin has emerged as a promising alternative, garnering significant attention as a biogenic resource that endows functional properties. This is primarily ascribed to its remarkable origin and structure that explains lignin's capacity to bind other molecules, reinforce composites, act as an antioxidant, and endow antimicrobial effects.

View Article and Find Full Text PDF

Owing to its purity and exceptional mechanical performance, bacterial nanocellulose (BNC) is well suited for tissue engineering applications. BNC assembles as a network that features similarities with the extracellular matrix (ECM) while exhibiting excellent integrity in the wet state, suitable for suturing and sterilization. The development of complex 3D forms is shown by taking advantage of the aerobic process involved in the biogenesis of BNC at the air/culture medium interphase.

View Article and Find Full Text PDF

Colloids are suitable options to replace surfactants in the formation of multiphase systems while simultaneously achieving performance benefits. We introduce synergetic combination of colloids for the interfacial stabilization of complex fluids that can be converted into lightweight materials. The strong interactions between high aspect ratio and hydrophilic fibrillated cellulose (CNF) with low aspect ratio hydrophobic particles afford superstable Pickering foams.

View Article and Find Full Text PDF

A new regioselective route is introduced for surface modification of biological colloids in the presence of water. Taking the case of cellulose nanofibers (CNFs), we demonstrate a site-specific (93% selective) reaction between the primary surface hydroxyl groups (C6-OH) of cellulose and acyl imidazoles. CNFs bearing C6-acetyl and C6-isobutyryl groups, with a degree of substitution of up to 1 mmol g are obtained upon surface esterification, affording CNFs of adjustable surface energy.

View Article and Find Full Text PDF