Publications by authors named "Romesh Gautom"

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has gravely affected societies around the world. Outbreaks in different parts of the globe have been shaped by repeated introductions of new viral lineages and subsequent local transmission of those lineages. Here, we sequenced 3940 SARS-CoV-2 viral genomes from Washington State (USA) to characterize how the spread of SARS-CoV-2 in Washington State in early 2020 was shaped by differences in timing of mitigation strategies across counties and by repeated introductions of viral lineages into the state.

View Article and Find Full Text PDF

Laboratory diagnostics play an essential role in pandemic preparedness. In January 2020, the first US case of COVID-19 was confirmed in Washington State. At the same time, the Washington State Public Health Laboratory (WA PHL) was in the process of building upon and initiating innovative preparedness activities to strengthen laboratory testing capabilities, operations, and logistics.

View Article and Find Full Text PDF

The rapid spread of SARS-CoV-2 has gravely impacted societies around the world. Outbreaks in different parts of the globe are shaped by repeated introductions of new lineages and subsequent local transmission of those lineages. Here, we sequenced 3940 SARS-CoV-2 viral genomes from Washington State to characterize how the spread of SARS-CoV-2 in Washington State (USA) was shaped by differences in timing of mitigation strategies across counties, as well as by repeated introductions of viral lineages into the state.

View Article and Find Full Text PDF

After its emergence in Wuhan, China, in late November or early December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus rapidly spread globally. Genome sequencing of SARS-CoV-2 allows the reconstruction of its transmission history, although this is contingent on sampling. We analyzed 453 SARS-CoV-2 genomes collected between 20 February and 15 March 2020 from infected patients in Washington state in the United States.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19), the respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first identified in Wuhan, China and has since become pandemic. In response to the first cases identified in the United States, close contacts of confirmed COVID-19 cases were investigated to enable early identification and isolation of additional cases and to learn more about risk factors for transmission. Close contacts of nine early travel-related cases in the United States were identified and monitored daily for development of symptoms (active monitoring).

View Article and Find Full Text PDF

Following its emergence in Wuhan, China, in late November or early December 2019, the SARS-CoV-2 virus has rapidly spread throughout the world. On March 11, 2020, the World Health Organization declared Coronavirus Disease 2019 (COVID-19) a pandemic. Genome sequencing of SARS-CoV-2 strains allows for the reconstruction of transmission history connecting these infections.

View Article and Find Full Text PDF

The Washington State Department of Health Public Health Laboratories (WAPHL) has tested 11,501 samples between 2007 and 2017 for a foodborne disease using a combination of identification, serotyping, and subtyping tools. During this period there were 8037 total clinical and environmental samples tested by pulsed-field gel electrophoresis (PFGE), including 512 foodborne disease clusters and 2176 PFGE patterns of subsp. .

View Article and Find Full Text PDF

The current pathogen-typing methods have suboptimal sensitivities and specificities. DNA sequencing offers an opportunity to type pathogens with greater degrees of discrimination using single nucleotide polymorphisms (SNPs) than with pulsed-field gel electrophoresis (PFGE) and other methodologies. In a recent cluster of Escherichia coli O157:H7 infections attributed to salad bar exposures and romaine lettuce, a subset of cases denied exposure to either source, although PFGE and multiple-locus variable-number tandem-repeat analysis (MLVA) suggested that all isolates had the same recent progenitor.

View Article and Find Full Text PDF

Tuberculosis (TB) remains a significant global health problem for which rapid diagnosis is critical to both treatment and control. This report describes a multiplex PCR method, the Mycobacterial IDentification and Drug Resistance Screen (MID-DRS) assay, which allows identification of members of the Mycobacterium tuberculosis complex (MTBC) and the simultaneous amplification of targets for sequencing-based drug resistance screening of rifampin-resistant (rifampin(r)), isoniazid(r), and pyrazinamide(r) TB. Additionally, the same multiplex reaction amplifies a specific 16S rRNA gene target for rapid identification of M.

View Article and Find Full Text PDF

A multiplex PCR method has been developed to differentiate between the most common clinical serotypes of Salmonella enterica subsp. enterica encountered in Washington State and the United States in general. Six genetic loci from S.

View Article and Find Full Text PDF

Context: Escherichia coli O157:H7, one of hundreds of strains of the gram-negative bacterium E coli, has been implicated in numerous lake-borne outbreaks of infection during the past decade. In August 1999, several children who later became ill with E coli O157:H7 infection reported swimming in a lake in Clark County, Washington. The lake was closed and an investigation begun.

View Article and Find Full Text PDF

Diagnosis of Bordetella pertussis infection has been difficult due to the low sensitivity of culture. PCR tests have been shown to be more sensitive than culture, but the reported sensitivity of PCR is variable. We evaluated PCR product detection by using either agarose gel electrophoresis (PCR-gel) or dot blot hybridization with (32)P-labeled oligonucleotide probes, and we compared these methods to both culture and direct fluorescent-antibody (DFA) assays with microscopy for the detection of pertussis.

View Article and Find Full Text PDF

All obligate bacterial endosymbionts of free-living amoebae currently described are affiliated with the alpha-Proteobacteria, the Chlamydiales or the phylum Cytophaga-Flavobacterium-Bacteroides. Here, six rod-shaped gram-negative obligate bacterial endosymbionts of clinical and environmental isolates of Acanthamoeba spp. from the USA and Malaysia are reported.

View Article and Find Full Text PDF