Publications by authors named "Rolf D Vinebrooke"

Understanding the interactions among anthropogenic stressors is critical for effective conservation and management of ecosystems. Freshwater scientists have invested considerable resources in conducting factorial experiments to disentangle stressor interactions by testing their individual and combined effects. However, the diversity of stressors and systems studied has hindered previous syntheses of this body of research.

View Article and Find Full Text PDF
Article Synopsis
  • The rise of cyanobacterial blooms in global water bodies highlights the necessity for improved management tools, including the reconstruction of historical cyanobacterial data and understanding the environmental factors that contribute to their prevalence.
  • A study compared a new method using visible near-infrared reflectance spectroscopy (VNIRS) for estimating cyanobacterial abundance in lake sediments against the traditional real-time PCR (qPCR) technique across 30 different lakes.
  • Results showed that VNIRS is effective for analyzing recent cyanobacterial trends, with a significant correlation to qPCR results in 76% of the lakes, but also indicated the need for refinement in cases where the VNIRS technique did not perform as strongly.
View Article and Find Full Text PDF

Climate warming is a ubiquitous stressor in freshwater ecosystems, yet its interactive effects with other stressors are poorly understood. We address this knowledge gap by testing the ability of three contrasting null models to predict the joint impacts of warming and a range of other aquatic stressors using a new database of 296 experimental combinations. Despite concerns that stressors will interact to cause synergisms, we found that net impacts were usually best explained by the effect of the stronger stressor alone (the dominance null model), especially if this stressor was a local disturbance associated with human land use.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change has altered the thermal structure of lakes, impacting both surface and deep water temperatures, though surface changes are more documented than deepwater trends.
  • This study presents a comprehensive dataset of vertical temperature profiles from 153 lakes, starting from as early as 1894, allowing for a deeper analysis of long-term trends.
  • The researchers also collected various geographic and water quality data to understand how different factors influence the thermal structures of these lakes amid ongoing environmental changes.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates a lake that frequently experiences harmful cyanobacterial blooms (cyanoHABs) due to cultural eutrophication, which increases nutrient levels from surrounding landscape development.
  • Sediment core analysis reveals that cyanobacteria have been part of the lake's ecosystem for a long time, but the specific toxin-producing species Dolichospermum sp. WA102 only became dominant in the mid-1990s.
  • Historical agricultural practices and fish stocking appear to have contributed to shifts in nutrient cycling and the lake's ecology, highlighting the need for informed management strategies to address current cyanoHAB issues.
View Article and Find Full Text PDF
Article Synopsis
  • Global lake surface water temperatures have warmed at an average rate of +0.37 °C per decade, while deepwater temperatures have shown minimal average change (+0.06 °C per decade), but with high variability among individual lakes.
  • The study analyzed long-term vertical temperature data from 1970-2009 to uncover trends and influences on lake thermal structures.
  • The variability in deepwater temperature trends is not fully explained by surface temperatures or internal lake factors, suggesting that broader climate patterns or human activities play a significant role in these long-term changes.
View Article and Find Full Text PDF

Anthropogenic environmental changes, or 'stressors', increasingly threaten biodiversity and ecosystem functioning worldwide. Multiple-stressor research is a rapidly expanding field of science that seeks to understand and ultimately predict the interactions between stressors. Reviews and meta-analyses of the primary scientific literature have largely been specific to either freshwater, marine or terrestrial ecology, or ecotoxicology.

View Article and Find Full Text PDF

Multiple factors operating across different spatial and temporal scales affect β-diversity, the variation in community composition among sites. Disentangling the relative influence of co-occurring ecological drivers over broad biogeographic gradients and time is critical to developing mechanistic understanding of community responses to natural environmental heterogeneity as well as predicting the effects of anthropogenic change. We partitioned taxonomic β-diversity in phytoplankton communities across 75 north-temperate lakes and reservoirs in Alberta, Canada, using data-driven, spatially constrained null models to differentiate between spatially structured, spatially independent, and spuriously correlated associations with a suite of biologically relevant environmental variables.

View Article and Find Full Text PDF

The distribution and quality of water resources vary dramatically across Canada, and human impacts such as land-use and climate changes are exacerbating uncertainties in water supply and security. At the national level, Canada has no enforceable standards for safe drinking water and no comprehensive water-monitoring program to provide detailed, timely reporting on the state of water resources. To provide Canada's first national assessment of lake health, the NSERC Canadian Lake Pulse Network was launched in 2016 as an academic-government research partnership.

View Article and Find Full Text PDF

Ecological stressors (i.e., environmental factors outside their normal range of variation) can mediate each other through their interactions, leading to unexpected combined effects on communities.

View Article and Find Full Text PDF

Species diversity is often an implicit source of biological insurance for communities against the impacts of novel perturbations, such as the introduction of an invasive species. High environmental heterogeneity (e.g.

View Article and Find Full Text PDF

The effects of reducing nutrient inputs to lakes and reservoirs are often delayed by hysteresis resulting from internal phosphorus (P) loading from sediments. Consequently, controlling harmful algal blooms (HABs) in many eutrophic ecosystems requires additional management to improve water quality. We manipulated iron (Fe) concentrations in a hypereutrophic lake to determine if Fe amendment would suppress HABs by inhibiting P release from sediments.

View Article and Find Full Text PDF

The accelerating rate of global change has focused attention on the cumulative impacts of novel and extreme environmental changes (i.e. stressors), especially in marine ecosystems.

View Article and Find Full Text PDF

Increases in atmospheric temperature and nutrients from land are thought to be promoting the expansion of harmful cyanobacteria in lakes worldwide, yet to date there has been no quantitative synthesis of long-term trends. To test whether cyanobacteria have increased in abundance over the past ~ 200 years and evaluate the relative influence of potential causal mechanisms, we synthesised 108 highly resolved sedimentary time series and 18 decadal-scale monitoring records from north temperate-subarctic lakes. We demonstrate that: (1) cyanobacteria have increased significantly since c.

View Article and Find Full Text PDF

Anthropogenic nitrogen (N) deposition affects unproductive remote alpine and circumpolar ecosystems, which are often considered sentinels of global change. Human activities and forest fires can also elevate phosphorus (P) deposition, possibly compounding the ecological effects of increased N deposition given the ubiquity of nutrient co-limitation of primary producers. Low N : P ratios coupled with evidence of NP-limitation from bioassays led us to hypothesize that P indirectly stimulates phytoplankton by amplifying the direct positive effect of N (i.

View Article and Find Full Text PDF

We reconstructed historical trends in mercury (Hg) accumulation over the past ∼ 150 years in nine western Canadian alpine lakes. Recent Hg accumulation rates (fluxes) ranged between ∼ 7 and 75 μg m(-2) yr(-1), which were an average of 1.8 times higher than preindustrial (i.

View Article and Find Full Text PDF

Here, we show that alpine lake ecosystems are responsive to interannual variation in climate, based on long-term limnological and meteorological data from the Canadian Rockies. In the 2000s, in years with colder winter temperatures, higher winter snowfall, later snowmelt, shorter ice-free seasons, and dryer summers, relative to the 1990s, alpine lakes became clearer, warmer, and mixed to deeper depths. Further, lakes became more dilute and nutrient-poor, the latter leading to significant declines in total phytoplankton biomass.

View Article and Find Full Text PDF

Algal assemblages can be highly responsive to environmental changes in recovering acidified lakes. We compared epilithic algal assemblages in boreal lakes during chemical recovery from atmospheric (Killarney Park, Ontario) and experimental (Lake 302S, Experimental Lakes Area, Ontario) acidification to assess the impact of spatial and temporal scale of severe acidification on taxonomic resilience (i.e.

View Article and Find Full Text PDF