The efficient separation of chiral molecules is a fundamental challenge in the manufacture of pharmaceuticals and light-polarising materials. We developed an approach that combines machine learning with a physics-based representation to predict resolving agents for chiral molecules, using a transformer-based neural network. In retrospective tests, our approach reaches a four to six-fold improvement over the historical - trial and error based - hit rate.
View Article and Find Full Text PDFGenerative modelling aims to accelerate the discovery of novel chemicals by directly proposing structures with desirable properties. Recently, score-based, or diffusion, generative models have significantly outperformed previous approaches. Key to their success is the close relationship between the score and physical force, allowing the use of powerful equivariant neural networks.
View Article and Find Full Text PDF