Sci Total Environ
July 2021
A historical series of aerial photographs spanning more than 70 years (1945-2018) revealed that natural acid rock drainage (ARD) has experienced an intensification in the Noguera de Vallferrera alpine catchment (Central Pyrenees) due to climate change during the last decade. ARD manifests by the precipitation of whitish aluminum-compounds that strikingly cover the beds of some gullies and streams in high-mountain catchments. The total length of affected streams has increased from ca.
View Article and Find Full Text PDFMercury's images obtained by the 1974 Mariner 10 flybys show extensive cratered landscapes degraded into vast knob fields, known as chaotic terrain (AKA hilly and lineated terrain). For nearly half a century, it was considered that these terrains formed due to catastrophic quakes and ejecta fallout produced by the antipodal Caloris basin impact. Here, we present the terrains' first geologic examination based on higher spatial resolution MESSENGER (MErcury Surface Space ENvironment GEochemistry and Ranging) imagery and laser altimeter topography.
View Article and Find Full Text PDFThis work introduces the concept that sinkhole frequency in some karst settings increases during drought periods. This conception is tested in a sector of the Fluvia River valley in NE Spain, where subsidence phenomena is related to the karstification of folded Eocene evaporite formations. In the discharge areas, the evaporites behave as confined aquifers affected by hypogene karstification caused by aggressive artesian flows coming form an underlying carbonate aquifer.
View Article and Find Full Text PDFIt has been proposed that ~3.4 billion years ago an ocean fed by enormous catastrophic floods covered most of the Martian northern lowlands. However, a persistent problem with this hypothesis is the lack of definitive paleoshoreline features.
View Article and Find Full Text PDFCatastrophic floods generated ~3.2 Ga by rapid groundwater evacuation scoured the Solar System's most voluminous channels, the southern circum-Chryse outflow channels. Based on Viking Orbiter data analysis, it was hypothesized that these outflows emanated from a global Hesperian cryosphere-confined aquifer that was infused by south polar meltwater infiltration into the planet's upper crust.
View Article and Find Full Text PDF