Comput Struct Biotechnol J
March 2025
Ensuring the safety and sustainability of advanced materials (AdMas) is critical for fostering innovation while protecting human health and the environment. As industries integrate AdMas into commercial products to innovate in the next stage of the value chains, there is an urgent need for robust methodologies to detect, characterize, and assess their potential risks throughout their life cycle. The MACRAMÉ Project addresses this challenge by advancing standardized testing and regulatory frameworks, supporting the EU's vision for a toxic-free environment.
View Article and Find Full Text PDFArch Toxicol
June 2025
Exposure to respiratory sensitizers (RSs) is the leading cause of occupational asthma. Although the prospective identification of RSs is important, there currently exists no OECD-approved test guideline for this endpoint. The adverse outcome pathway for respiratory sensitization consists of key event (KE) 1: binding of the respiratory sensitizer to a protein, KE2: activation of lung epithelial cells, KE3: activation of dendritic cells, and KE4: T-cell response.
View Article and Find Full Text PDFRespiratory sensitization is a complex immunological process eventually leading to hypersensitivity following re-exposure to the chemical. A frequent consequence is occupational asthma, which may occur after long latency periods. Although chemical-induced respiratory hypersensitivity has been known for decades, there are currently no comprehensive and validated approaches available for the prospective identification of chemicals that induce respiratory sensitization, while the expectations of new approach methodologies (NAMs) are high.
View Article and Find Full Text PDFThe European Union (EU) Chemicals Strategy for Sustainability regards chemicals that affect the immune system among the most harmful ones. The Extended One-Generation Reproductive Toxicity study (EOGRTS; Organisation for Economic Co-Operation and Development (OECD) Test Guideline (TG) 443), addresses, among others, potential effects of chemicals on development. In specific cases, the EOGRTS is performed with addition of a so-called cohort 3, that addresses potential effects on the developing immune system, by means of a central assay measuring the T-cell dependent antibody response (TDAR).
View Article and Find Full Text PDFMacrophages are well known for their involvement in the biocompatibility, as well as biodistribution, of nano(bio)materials. Although there are a number of rodent cell lines, they may not fully recapitulate primary cell responses, particularly those of human cells. Isolation of tissue-resident macrophages from humans is difficult and may result in insufficient cells with which to determine the possible interaction with nano(bio)materials.
View Article and Find Full Text PDFFront Toxicol
April 2024
As a complex system governing and interconnecting numerous functions within the human body, the immune system is unsurprisingly susceptible to the impact of toxic chemicals. Toxicants can influence the immune system through a multitude of mechanisms, resulting in immunosuppression, hypersensitivity, increased risk of autoimmune diseases and cancer development. At present, the regulatory assessment of the immunotoxicity of chemicals relies heavily on rodent models and a limited number of Organisation for Economic Co-operation and Development (OECD) test guidelines, which only capture a fraction of potential toxic properties.
View Article and Find Full Text PDFFor the batch release of vaccines, potency release assays are required. Non-animal in vitro tests have numerous advantages and are preferred; however, several vaccines are still released using in vivo assays. Their major drawback is the inherent variability with its practical implications.
View Article and Find Full Text PDFBackground: The establishment of reliable and robust in vitro models for hazard assessment, a prerequisite for moving away from animal testing, requires the evaluation of model transferability and reproducibility. Lung models that can be exposed via the air, by means of an air-liquid interface (ALI) are promising in vitro models for evaluating the safety of nanomaterials (NMs) after inhalation exposure. We performed an inter-laboratory comparison study to evaluate the transferability and reproducibility of a lung model consisting of the human bronchial cell line Calu-3 as a monoculture and, to increase the physiologic relevance of the model, also as a co-culture with macrophages (either derived from the THP-1 monocyte cell line or from human blood monocytes).
View Article and Find Full Text PDFImmunocompatibility issues related to nano(bio)materials, particularly liposomal formulations, involving activation of the complement system have been relatively well described however, they highlight the importance of preclinical evaluation of such interactions. These complement-mediated hypersensitivity reactions, in which basophils are implicated, are associated with complement activation-related pseudoallergy (CARPA). Ex vivo investigation of such events using primary basophils is technically challenging due to the relatively limited number of circulating basophils in peripheral blood.
View Article and Find Full Text PDFPhysiologically-based kinetic (PBK) modeling is a valuable tool to understand the kinetics of nanoparticles (NPs) in vivo. However, estimating PBK parameters remains challenging and commonly requires animal studies. To develop predictive models to estimate PBK parameter values based on NP characteristics, a database containing PBK parameter values and corresponding NP characteristics is needed.
View Article and Find Full Text PDFEnviron Health
February 2023
Background: Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In 2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar effects observed in experimental animal studies.
View Article and Find Full Text PDFRelative potency factors (RPFs) for per- and polyfluoroalkyl substances (PFAS) have previously been derived based on liver effects in rodents for the purpose of performing mixture risk assessment with primary input from biomonitoring studies. However, in 2020, EFSA established a tolerable weekly intake for four PFAS assuming equal toxic potency for immune suppressive effects in humans. In this study we explored the possibility of deriving RPFs for immune suppressive effects using available data in rodents and humans.
View Article and Find Full Text PDFAir-liquid interface (ALI) lung cell models cultured on permeable transwell inserts are increasingly used for respiratory hazard assessment requiring controlled aerosolization and deposition of any material on ALI cells. The approach presented herein aimed to assess the transwell insert-delivered dose of aerosolized materials using the VITROCELL® Cloud12 system, a commercially available aerosol-cell exposure system. An inter-laboratory comparison study was conducted with seven European partners having different levels of experience with the VITROCELL® Cloud12.
View Article and Find Full Text PDFUsage of injectable dermal fillers applied for aesthetic purposes has extensively increased over the years. As such, the number of related adverse reactions has increased, including patients showing severe complications such as product migration, topical swelling and inflammatory reactions of the skin. In order to understand the underlying molecular events of these adverse reactions we performed a genome-wide gene expression study on the multi-cell type human Phenion® Full-Thickness Skin Model exposed to five experimental hyaluronic acid (HA) preparations with increasing cross-linking degree, four commercial fillers from Perfectha®, and non-resorbable filler Bio-Alcamid®.
View Article and Find Full Text PDFSafety and potency assessment for batch release testing of established vaccines still relies partly on animal tests. An important avenue to move to batch release without animal testing is the consistency approach. This approach is based on thorough characterization of the vaccine to identify critical quality attributes that inform the use of a comprehensive set of non-animal tests to release the vaccine, together with the principle that the quality of subsequent batches follows from their consistent production.
View Article and Find Full Text PDFNanoparticles including nanomedicines are known to be recognised by and interact with the immune system. As these interactions may result in adverse effects, for safety evaluation, the presence of such interactions needs to be investigated. Nanomedicines in particular should not unintendedly interact with the immune system, since patient's exposure is not minimised as in the case of 'environmental' nanoparticles, and repeated exposure may be required.
View Article and Find Full Text PDFResorbable tissue fillers for aesthetic purposes can induce severe complications including product migration, late swelling, and inflammatory reactions. The relation between product characteristics and adverse effects is not well understood. We hypothesized that the degree of cross-linking hyaluronic acid (HA) fillers was associated with the occurrence of adverse effects.
View Article and Find Full Text PDFNanotechnologies such as nanoparticles are established components of new medical devices and pharmaceuticals. The use and distribution of these materials increases the requirement for standardized evaluation of possible adverse effects, starting with a general cytotoxicity screening. The Horizon 2020 project "Regulatory Science Framework for Nano(bio)material-based Medical Products and Devices (REFINE)" identified in vitro cytotoxicity quantification as a central task and first step for risk assessment and development for medical nanocarriers.
View Article and Find Full Text PDFThe widespread and increasing use of engineered nanomaterials (ENM) increases the risk of human exposure, generating concern that ENM may provoke adverse health effects. In this respect, their physicochemical characteristics are critical. The immune system may respond to ENM through inflammatory reactions.
View Article and Find Full Text PDFDrug Deliv Transl Res
September 2022
The use of nanobiomaterials (NBMs) is becoming increasingly popular in the field of medicine. To improve the understanding on the biodistribution of NBMs, the present study aimed to implement and parametrize a physiologically based pharmacokinetic (PBPK) model. This model was used to describe the biodistribution of two NBMs after intravenous administration in rats, namely, poly(alkyl cyanoacrylate) (PACA) loaded with cabazitaxel (PACA-Cbz), and LipImage™ 815.
View Article and Find Full Text PDFDrug Deliv Transl Res
September 2022
The application of nanomaterials in medicine has led to novel pharmaceuticals and medical devices that have demonstrated a strong potential for increasing the efficacy/performance and safety of therapeutic and diagnostic procedures to address a wide range of diseases. However, the successful translation of these technologies from their inception (proof-of-concept) to clinical practice has been challenged by substantial gaps in the scientific and technical capacity of R&D companies, especially SMEs, to keep up with the ever-evolving regulatory expectations in the emerging area of nanomedicine. To address these challenges, the EU Horizon 2020 project REFINE has developed a Decision Support System (DSS) to support developers of nanotechnology-enabled health products in bringing their products to the clinic.
View Article and Find Full Text PDFDrug Deliv Transl Res
September 2022
Biodistribution of nanoencapsulated bioactive compounds is primarily determined by the size, shape, chemical composition and surface properties of the encapsulating nanoparticle, and, thus, less dependent on the physicochemical properties of the active pharmaceutical ingredient encapsulated. In the current work, we aimed to investigate the impact of formulation type on biodistribution profile for two clinically relevant nanoformulations. We performed a comparative study of biodistribution in healthy rats at several dose levels and durations up to 14-day post-injection.
View Article and Find Full Text PDFToxins (Basel)
January 2022
Background: Ensuring consistency of tetanus neurotoxin (TeNT) production by could help to ensure consistent product quality in tetanus vaccine manufacturing, ultimately contributing to reduced animal testing. The aim of this study was to identify RNA signatures related to consistent TeNT production using standard and non-standard culture conditions.
Methods: We applied RNA sequencing (RNA-Seq) to study gene expression in small-scale batches under several culture conditions.
Introduction: Before release, vaccine batches are assessed for quality to evaluate whether they meet the product specifications. Vaccine batch tests, in particular of inactivated and toxoid vaccines, still largely rely on methods. Improved vaccine production processes, ethical concerns, and suboptimal performance of some tests have led to the development of alternatives.
View Article and Find Full Text PDF