Acute cardiac rupture and adverse left ventricular (LV) remodeling causing heart failure are serious complications of acute myocardial infarction (MI). While cardio-hepatic interactions have been recognized, their role in MI remains unknown. We treated cultured cardiomyocytes with conditioned media from various cell types and analyzed the media by mass spectrometry to identify α1-microglobulin (AM) as an Akt-activating hepatokine.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
October 2018
Objective- Atherosclerosis is a common disease caused by a variety of metabolic and inflammatory disturbances. MicroRNA (miR)-33a within SREBF2 (sterol regulatory element-binding factor 2) is a potent target for treatment of atherosclerosis through regulating both aspects; however, the involvement of miR-33b within SREBF1 remains largely unknown. Although their host genes difference could lead to functional divergence of miR-33a/b, we cannot dissect the roles of miR-33a/b in vivo because of lack of miR-33b sequences in mice, unlike human.
View Article and Find Full Text PDFRationale: Heart failure and atherosclerosis share the underlying mechanisms of chronic inflammation followed by fibrosis. A highly conserved microRNA (miR), miR-33, is considered as a potential therapeutic target for atherosclerosis because it regulates lipid metabolism and inflammation. However, the role of miR-33 in heart failure remains to be elucidated.
View Article and Find Full Text PDF