The integration of big data into nephrology research will open new avenues for analyzing and understanding complex biological datasets, driving advances in personalized management of kidney diseases. This paper describes the multifaceted challenges and opportunities by incorporating big data in nephrology, emphasizing the importance of data standardization, advanced storage solutions, and advanced analytical methods. We discuss the role of data science workflows, including data collection, preprocessing, integration, and analysis, in facilitating comprehensive insights into disease mechanisms and patient outcomes.
View Article and Find Full Text PDFPrevious studies have established the association of sex with gene and protein expression. This study investigated the association of sex with the abundance of endogenous urinary peptides, using capillary electrophoresis-coupled to mass spectrometry (CE-MS) datasets from 2008 healthy individuals and patients with type II diabetes, divided in one discovery and two validation cohorts. Statistical analysis using the Mann-Whitney test, adjusted for multiple testing, revealed 143 sex-associated peptides in the discovery cohort.
View Article and Find Full Text PDFDatabase (Oxford)
December 2022
In the last decades, a great amount of work has been done in predictive modeling of issues related to human and environmental health. Resolution of issues related to healthcare is made possible by the existence of several biomedical vocabularies and standards, which play a crucial role in understanding the health information, together with a large amount of health-related data. However, despite a large number of available resources and work done in the health and environmental domains, there is a lack of semantic resources that can be utilized in the food and nutrition domain, as well as their interconnections.
View Article and Find Full Text PDFBesides the numerous studies in the last decade involving food and nutrition data, this domain remains low resourced. Annotated corpuses are very useful tools for researchers and experts of the domain in question, as well as for data scientists for analysis. In this paper, we present the annotation process of food consumption data (recipes) with semantic tags from different semantic resources-Hansard taxonomy, FoodOn ontology, SNOMED CT terminology and the FoodEx2 classification system.
View Article and Find Full Text PDFBackground: Recently, food science has been garnering a lot of attention. There are many open research questions on food interactions, as one of the main environmental factors, with other health-related entities such as diseases, treatments, and drugs. In the last 2 decades, a large amount of work has been done in natural language processing and machine learning to enable biomedical information extraction.
View Article and Find Full Text PDF