Publications by authors named "Richard D Head"

Background & Aims: Biomarkers that integrate genetic and environmental factors and predict outcome in complex immune diseases such as inflammatory bowel disease (IBD; including Crohn's disease [CD] and ulcerative colitis [UC]) are needed. We showed that morphologic patterns of ileal Paneth cells (Paneth cell phenotype [PCP]; a surrogate for PC function) is one such cellular biomarker for CD. Given the shared features between CD and UC, we hypothesized that PCP is also associated with molecular/genetic features and outcome in UC.

View Article and Find Full Text PDF

Environmental enteric dysfunction (EED) is a diffuse small bowel disorder associated with poor growth, inadequate responses to oral vaccines, and nutrient malabsorption in millions of children worldwide. We identify loss of the small intestinal Paneth and goblet cells that are critical for innate immunity, reduced villous height, increased bile acids, and dysregulated nicotinamide adenine dinucleotide (NAD) synthesis signaling as potential mechanisms underlying EED and which also correlated with diminished length-for-age score. Isocaloric low-protein diet (LPD) consumption in mice recapitulated EED histopathology and transcriptomic changes in a microbiota-independent manner, as well as increases in serum and fecal bile acids.

View Article and Find Full Text PDF

Tuberculosis remains an international health threat partly because of limited protection from pulmonary tuberculosis provided by standard intradermal vaccination with Bacillus of Calmette and Guérin (BCG); this may reflect the inability of intradermal vaccination to optimally induce pulmonary immunity. In contrast, respiratory Mycobacterium tuberculosis infection usually results in the immune-mediated bacillary containment of latent tuberculosis infection (LTBI). Here we present RNA-Seq-based assessments of systemic and pulmonary immune cells from LTBI participants and recipients of intradermal and oral BCG.

View Article and Find Full Text PDF

Background: The pathophysiology of peripartum cardiomyopathy (PPCM) and its distinctive biological features remain incompletely understood. High-throughput serum proteomic profiling, a powerful tool to gain insights into the pathophysiology of diseases at a systems biology level, has never been used to investigate PPCM relative to nonischemic cardiomyopathy.

Objectives: The aim of this study was to characterize the pathophysiology of PPCM through serum proteomic analysis.

View Article and Find Full Text PDF

Environmental factors may alter the fetal genome to cause metabolic diseases. It is unknown whether embryonic immune cell programming impacts the risk of type 2 diabetes in later life. We demonstrate that transplantation of fetal hematopoietic stem cells (HSCs) made vitamin D deficient in utero induce diabetes in vitamin D-sufficient mice.

View Article and Find Full Text PDF
Article Synopsis
  • The text indicates that there is a correction to a previously published article.
  • The article in question is referenced by its Digital Object Identifier (DOI), which is 10.3389/fimmu.2022.1093242.
  • Corrections like this are typically issued to address errors or inaccuracies in the original publication.
View Article and Find Full Text PDF

Introduction: Over the last decade, the field of systems vaccinology has emerged, in which high throughput transcriptomics and other omics assays are used to probe changes of the innate and adaptive immune system in response to vaccination. The goal of this study was to benchmark key technical and analytical parameters of RNA sequencing (RNA-seq) in the context of a multi-site, double-blind randomized vaccine clinical trial.

Methods: We collected longitudinal peripheral blood mononuclear cell (PBMC) samples from 10 subjects before and after vaccination with a live attenuated vaccine and performed RNA-Seq at two different sites using aliquots from the same sample to generate two replicate datasets (5 time points for 50 samples each).

View Article and Find Full Text PDF

Enterotoxigenic E. coli (ETEC) produce heat-labile (LT) and/or heat-stable (ST) enterotoxins, and commonly cause diarrhea in resource-poor regions. ETEC have been linked repeatedly to sequelae in children including enteropathy, malnutrition, and growth impairment.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. Prior studies examining the mutational landscape of GBM revealed recurrent alterations in genes that regulate the same growth control pathways. To this regard, ~ 40% of GBM harbor EGFR alterations, whereas BRAF variants are rare.

View Article and Find Full Text PDF

Intestinal Paneth cells modulate innate immunity and infection. In Crohn's disease, genetic mutations together with environmental triggers can disable Paneth cell function. Here, we find that a western diet (WD) similarly leads to Paneth cell dysfunction through mechanisms dependent on the microbiome and farnesoid X receptor (FXR) and type I interferon (IFN) signaling.

View Article and Find Full Text PDF

Background: A non-synonymous single nucleotide polymorphism of the ATG16L1 gene, T300A, is a major Crohn's disease (CD) susceptibility allele, and is known to be associated with increased apoptosis induction in the small intestinal crypt base in CD subjects and mouse models. We hypothesized that ATG16L1 T300A genotype also correlates with increased tumor apoptosis and therefore could lead to superior clinical outcome in cancer subjects.

Methods: T300A genotyping by Taqman assay was performed for gastric carcinoma subjects who underwent resection from two academic medical centers.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2 is the virus responsible for the COVID-19 pandemic, and while neutralizing antibodies show potential in treatment, their in vivo mechanisms aren't fully understood.
  • Research shows that when administered as therapy after infection, neutralizing monoclonal antibodies (mAbs) are more effective at reducing the virus and lung disease compared to modified versions lacking Fc function.
  • These neutralizing mAbs work better with the help of immune cells like monocytes and CD8 T cells, which help reduce inflammation and promote tissue repair during treatment.
View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2 is responsible for the COVID-19 pandemic, and neutralizing antibodies have potential as a treatment, although their exact functioning isn't fully understood.
  • Research shows that while neutralizing antibodies work without certain immune functions when used as prevention, they need these functions to be effective as a treatment after infection.
  • Effective treatment with neutralizing antibodies involves engagement with specific immune cells (monocytes), which helps reduce the virus's presence and lung damage, leading to better recovery outcomes.
View Article and Find Full Text PDF

Background: Rapid, reliable, and widespread testing is required to curtail the ongoing COVID-19 pandemic. Current gold-standard nucleic acid tests are hampered by supply shortages in critical reagents including nasal swabs, RNA extraction kits, personal protective equipment, instrumentation, and labor.

Methods: To overcome these challenges, we developed a rapid colorimetric assay using reverse-transcription loop-mediated isothermal amplification (RT-LAMP) optimized on human saliva samples without an RNA purification step.

View Article and Find Full Text PDF

Background: There is a growing recognition of the inherent limitations of the use of the left ventricular ejection fraction (LVEF) to accurately phenotype patients with heart failure (HF).

Objectives: The authors sought to identify unique proteomic signatures for patients with HF with reduced ejection fraction (HFrEF), HF with a midrange LVEF (HFmrEF), and HF with preserved ejection fraction (HFpEF), as well as to identify molecular differences between patients with ischemic and nonischemic HF.

Methods: We used high-content aptamer-based proteomics technology (SOMAscan) to interrogate the blood proteome of age- and sex-matched patients with HF within different LVEF groups.

View Article and Find Full Text PDF

Rapid, reliable, and widespread testing is required to curtail the ongoing COVID-19 pandemic. Current gold standard nucleic acid tests are hampered by supply shortages in critical reagents including nasal swabs, RNA extraction kits, personal protective equipment (PPE), instrumentation, and labor. Here we present an approach to overcome these challenges with the development of a rapid colorimetric assay using reverse-transcription loop-mediated isothermal amplification (RT-LAMP) optimized on human saliva samples without an RNA purification step.

View Article and Find Full Text PDF

We previously established that global deletion of the enhancer of trithorax and polycomb (ETP) gene, Asxl2, prevents weight gain. Because proinflammatory macrophages recruited to adipose tissue are central to the metabolic complications of obesity, we explored the role of ASXL2 in myeloid lineage cells. Unexpectedly, mice without Asxl2 only in myeloid cells (Asxl2ΔLysM) were completely resistant to diet-induced weight gain and metabolically normal despite increased food intake, comparable activity, and equivalent fecal fat.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied how an underdeveloped gut microbiome contributes to undernutrition in Bangladeshi children with severe acute malnutrition (SAM) transitioning to moderate acute malnutrition (MAM).
  • They utilized advanced techniques including metabolomic, proteomic, and metagenomic analyses to understand the biological changes during this transition.
  • A controlled feeding study identified a specialized food (MDCF) that effectively improved gut bacteria and boosted growth, immune function, and other health indicators in children with MAM.
View Article and Find Full Text PDF

Undernutrition in children is a pressing global health problem, manifested in part by impaired linear growth (stunting). Current nutritional interventions have been largely ineffective in overcoming stunting, emphasizing the need to obtain better understanding of its underlying causes. Treating Bangladeshi children with severe acute malnutrition with therapeutic foods reduced plasma levels of a biomarker of osteoclastic activity without affecting biomarkers of osteoblastic activity or improving their severe stunting.

View Article and Find Full Text PDF

Metagenomic sequencing of bacterial samples has become the gold standard for profiling microbial populations, but 16S rRNA profiling remains widely used due to advantages in sample throughput, cost, and sensitivity even though the approach is hampered by primer bias and lack of specificity. We hypothesized that a hybrid approach, that combined targeted PCR amplification with high-throughput sequencing of multiple regions of the genome, would capture many of the advantages of both approaches. We developed a method that identifies and quantifies members of bacterial communities through simultaneous analysis of multiple variable regions of the bacterial 16S rRNA gene.

View Article and Find Full Text PDF

It is suggested that subtyping of complex inflammatory diseases can be based on genetic susceptibility and relevant environmental exposure (G+E). We propose that using matched cellular phenotypes in human subjects and corresponding preclinical models with the same G+E combinations is useful to this end. As an example, defective Paneth cells can subtype Crohn's disease (CD) subjects; Paneth cell defects have been linked to multiple CD susceptibility genes and are associated with poor outcome.

View Article and Find Full Text PDF

Background & Aims: Crohn disease (CD) presents as chronic and often progressive intestinal inflammation, but the contributing pathogenic mechanisms are unclear. We aimed to identify alterations in intestinal cells that could contribute to the chronic and progressive course of CD.

Methods: We took an unbiased system-wide approach by performing sequence analysis of RNA extracted from formalin-fixed paraffin-embedded ileal tissue sections from patients with CD (n = 36) and without CD (controls; n = 32).

View Article and Find Full Text PDF

Background & Aims: Environmental enteric dysfunction (EED), a chronic diffuse inflammation of the small intestine, is associated with stunting in children in the developing world. The pathobiology of EED is poorly understood because of the lack of a method to elucidate the host response. This study tested a novel microarray method to overcome limitation of RNA sequencing to interrogate the host transcriptome in feces in Malawian children with EED.

View Article and Find Full Text PDF

Background: The arrival of RNA-seq as a high-throughput method competitive to the established microarray technologies has necessarily driven a need for comparative evaluation. To date, cross-platform comparisons of these technologies have been relatively few in number of platforms analyzed and were typically gene name annotation oriented. Here, we present a more extensive and yet precise assessment to elucidate differences and similarities in performance of numerous aspects including dynamic range, fidelity of raw signal and fold-change with sample titration, and concordance with qRT-PCR (TaqMan).

View Article and Find Full Text PDF

Photosynthetic microbes are of emerging interest as production organisms in biotechnology because they can grow autotrophically using sunlight, an abundant energy source, and CO₂, a greenhouse gas. Important traits for such microbes are fast growth and amenability to genetic manipulation. Here we describe Synechococcus elongatus UTEX 2973, a unicellular cyanobacterium capable of rapid autotrophic growth, comparable to heterotrophic industrial hosts such as yeast.

View Article and Find Full Text PDF