Publications by authors named "Riccardo Rovida"

In this work, a novel optical-chemical sensor for the detection of per- and polyfluorinated substances (PFASs) in a real scenario is presented. The proposed sensing approach exploits the multimode characteristics of plastic optical fibers (POFs) to achieve unconventional sensors via surface plasmon resonance (SPR) phenomena. The sensor is realized by the coupling of an SPR-POF platform with a novel chemical chip based on different polymeric nanolayers over the core of a D-shaped POF, one made up of an optical adhesive and one of a molecularly imprinted polymer (MIP) for PFAS.

View Article and Find Full Text PDF

A successful immunosensor is characterized by a proper antibody immobilization and orientation in order to enhance the antigen recognition. In this work, a thorough characterization of the antibody functionalized gold surface is performed to set up the best conditions to implement in an optical platform for the detection of Brucella sp. Two different strategies are evaluated, based on a random immobilization and on an oriented one: a direct antibody immobilization on carboxylic mixed polyethylene (PEG) self-assembled monolayer (SAM) or only carboxylic PEG SAM interface is compared to an oriented immobilization on a layer of protein G on the same PEG SAM interfaces.

View Article and Find Full Text PDF

In this work, Fe2O3 was investigated as a doping agent for poly(methyl methacrylate) (PMMA) in order to enhance the plasmonic effect in sensors based on D-shaped plastic optical fibers (POFs). The doping procedure consists of immerging a premanufactured POF sensor chip in an iron (III) solution, avoiding repolymerization and its related disadvantages. After treatment, a sputtering process was used to deposit a gold nanofilm on the doped PMMA in order to obtain the surface plasmon resonance (SPR).

View Article and Find Full Text PDF

Polymers via high internal phase emulsion (polyHIPEs) were molecularly imprinted with Irbesartan, an antihypertensive drug belonging to the class of angiotensin II receptor antagonists (sartan drugs), chosen for the proof-of-concept extraction of hazardous emerging contaminants from water. Different analyte-functional monomer molar ratios (1:100, 1:30 and 1:15) were investigated, and the MIP polyHIPEs have been characterized, parallel to the not imprinted polymer (NIP), by batch sorption experiments. The material with the highest template-functional monomer ratio was the best for Irbesartan removal, showing a sorption capacity fivefold higher than the NIP.

View Article and Find Full Text PDF