Background: SARS-CoV-2 resistance to nirmatrelvir/ritonavir (NMV/r) surveillance is essential to identify emergence and track treatment-resistance.
Methods: This integrative virologic analysis across EPIC (Evaluation of Protease Inhibition of COVID-19) phase 2/3 clinical studies (-High Risk [HR], -Standard Risk [SR], -Immunocompromised [IC], -Retreatment) used next-generation sequencing to identify SARS-CoV-2 variants and M or cleavage site emergent substitutions (ES). Treatment ES (TES) and ES in patients experiencing COVID-19‒related hospitalisation or viral RNA rebound were evaluated for in vitro NMV resistance, structure analysis, and global incidence via GISAID EpiCoV SARS-CoV-2 database.
In early 2020, severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) infections leading to COVID-19 disease reached a global level leading to the World Health Organization (WHO) declaration of a pandemic. Scientists around the globe rapidly responded to try and discover novel therapeutics and repurpose extant drugs to treat the disease. This work describes the preclinical discovery efforts that led to the invention of PF-07321332 (nirmatrelvir, ), a potent and orally active inhibitor of the SARS CoV-2 main protease (M) enzyme.
View Article and Find Full Text PDFVariants of SARS-CoV-2 pose significant challenges in public health due to their increased transmissibility and ability to evade natural immunity, vaccine protection, and monoclonal antibody therapeutics. The emergence of the highly transmissible Omicron variant and subsequent subvariants, characterized by an extensive array of over 32 mutations within the spike protein, intensifies concerns regarding vaccine evasion. In response, multiple antiviral therapeutics have received FDA emergency use approval, targeting the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and main protease (Mpro) regions, known to have relatively fewer mutations across novel variants.
View Article and Find Full Text PDFTo facilitate the detection and management of potential clinical antiviral resistance, in vitro selection of drug-resistant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) against the virus M inhibitor nirmatrelvir (Paxlovid active component) was conducted. Six M mutation patterns containing T304I alone or in combination with T21I, L50F, T135I, S144A, or A173V emerged, with A173V+T304I and T21I+S144A+T304I mutations showing >20-fold resistance each. Biochemical analyses indicated inhibition constant shifts aligned to antiviral results, with S144A and A173V each markedly reducing nirmatrelvir inhibition and M activity.
View Article and Find Full Text PDFDespite the record-breaking discovery, development and approval of vaccines and antiviral therapeutics such as Paxlovid, coronavirus disease 2019 (COVID-19) remained the fourth leading cause of death in the world and third highest in the United States in 2022. Here, we report the discovery and characterization of PF-07817883, a second-generation, orally bioavailable, SARS-CoV-2 main protease inhibitor with improved metabolic stability versus nirmatrelvir, the antiviral component of the ritonavir-boosted therapy Paxlovid. We demonstrate the pan-human coronavirus antiviral activity and off-target selectivity profile of PF-07817883.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) is a ubiquitous pathogen that infects the majority of the world population and causes lifelong latent infection. HCMV has been shown to exacerbate cardiovascular diseases, including myocarditis, vascular sclerosis, and transplant vasculopathy. Recently, we have shown that murine CMV (MCMV) recapitulates the cardiovascular dysfunction observed in patients with HCMV-induced myocarditis.
View Article and Find Full Text PDFIntroduction: Human cytomegalovirus (HCMV) is a global health threat due to its ubiquity and lifelong persistence in infected people. During latency, host CD8 T cell responses to HCMV continue to increase in a phenomenon known as memory inflation. We used murine CMV (MCMV) as a model for HCMV to characterize the memory inflation response to wild-type MCMV (KP) and a latency-defective mutant (ΔM33), which lacks M33, an MCMV chemokine receptor homolog.
View Article and Find Full Text PDFMol Pharm
January 2023
DNA viruses are responsible for many diseases in humans. Current treatments are often limited by toxicity, as in the case of cidofovir (CDV, Vistide), a compound used against cytomegalovirus (CMV) and adenovirus (AdV) infections. CDV is a polar molecule with poor bioavailability, and its overall clinical utility is limited by the high occurrence of acute nephrotoxicity.
View Article and Find Full Text PDFHerpes simplex virus 1 and 2 infections cause high unmet disease burdens worldwide. Mainly HSV-2 causes persistent sexually transmitted disease, fatal neonatal disease and increased transmission of HIV/AIDS. Thus, there is an urgent requirement to develop effective vaccines.
View Article and Find Full Text PDFAntiviral Res
December 2022
Vero cells are widely used for antiviral tests and virology research for SARS-CoV-2 as well as viruses from various other families. However, Vero cells generally express high levels of multi-drug resistance 1 (MDR1) or Pgp protein, the efflux transporter of foreign substances including many antiviral compounds, affecting the antiviral activity as well as interpretation of data. To address this, a Pgp gene knockout VeroE6 cell line (VeroE6-Pgp-KO) was generated using CRISPR-CAS9 technology.
View Article and Find Full Text PDFThe salivary glands are a crucial site of replication for human cytomegalovirus (HCMV) and its murine counterpart, murine cytomegalovirus (MCMV). Studies of MCMV often involve the use of BALB/c strain mice, but most in vitro assays are carried out in the NIH 3T3 cell line, which is derived from Swiss Albino mice. This report describes a BALB/c-derived mouse salivary gland cell line immortalized using the SV40 large T antigen.
View Article and Find Full Text PDFThe worldwide outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. Alongside vaccines, antiviral therapeutics are an important part of the healthcare response to countering the ongoing threat presented by COVID-19. Here, we report the discovery and characterization of PF-07321332, an orally bioavailable SARS-CoV-2 main protease inhibitor with in vitro pan-human coronavirus antiviral activity and excellent off-target selectivity and in vivo safety profiles.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) is a widespread pathogen that causes lifelong latent infection in the majority of the world population. HCMV is associated with increased incidence and severity of many cardiovascular diseases including myocarditis, atherosclerosis, and transplant vasculopathy. Due to the species-restricted nature of cytomegalovirus infection, murine cytomegalovirus (MCMV) is a useful model that recapitulates many of the features of HCMV infection of the cardiovascular system.
View Article and Find Full Text PDFHuman Cytomegalovirus (HCMV) is a widespread pathogen that causes lifelong latent infection and is associated with the exacerbation of chronic inflammatory diseases in seropositive individuals. Of particular impact, HCMV infection is known to worsen many cardiovascular diseases including myocarditis, atherosclerosis, hypertension, and transplant vasculopathy. Due to its similarity to HCMV, murine CMV (MCMV) is an appropriate model to understand HCMV-induced pathogenesis in the heart and vasculature.
View Article and Find Full Text PDFHerpes simplex virus (HSV) infections are common and can cause severe illness but no vaccine is currently available. The recent failure of subunit HSV vaccines has highlighted the need for vaccines that present a diverse array of antigens, including the development of next-generation live-attenuated vaccines. However, most attenuated HSV strains propagate poorly, limiting their ability to elicit protective immune responses.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) is associated with increased risk of chronic diseases of the heart and vasculature, including myocarditis, atherosclerosis, and transplant vasculopathy. To investigate CMV infection of the heart, murine cytomegalovirus (MCMV) was used to evaluate both acute and latent infection and the subsequent phenotypic and functional consequences of infection. Female BALB/c mice were intraperitoneally (i.
View Article and Find Full Text PDFVaccine
January 2020
Infection with Herpes Simplex Viruses (HSVs) represents a significant health burden worldwide with HSV-1 and HSV-2 causing genital disease and HSV-2 contributing to human immunodeficiency virus acquisition. Despite great need, there is currently no licensed vaccine against HSV. In this report, we evaluated the protective efficacy of a vaccine containing highly purified, inactivated HSV-2 particles (with and without additional recombinant glycoprotein D) formulated with a monophosphoryl lipid A/Alhydrogel adjuvant in a guinea pig HSV genital model.
View Article and Find Full Text PDFGenital herpes is a sexually transmitted disease representing a major global health concern. Currently, there is no approved vaccine and existing antiviral therapies exhibit limited efficacy. Herein, we describe an intranasal (IN) vaccine comprised of HSV-2 surface glycoproteins gD2 and gB2 formulated in a nanoemulsion adjuvant (NE01-gD2/gB2).
View Article and Find Full Text PDFHuman norovirus (HuNoV) is a leading cause of acute gastroenteritis in both developed and developing countries. Studies of HuNoV host cell interactions are limited by the lack of a simple, robust cell culture system. Due to their diverse HuNoV-like biological features, including histo-blood group antigen (HBGA) binding, rhesus enteric caliciviruses (ReCVs) are viable surrogate models for HuNoVs.
View Article and Find Full Text PDFNPJ Vaccines
August 2019
One promising approach for a herpes simplex virus vaccine uses a vaccine to prime and a chemoattractant to pull immune cells into the genital tract. We evaluated subunit vaccines (prime) and imiquimod (pull) in the guinea pig (gp) model of recurrent Herpes simplex virus type-2 (HSV-2). Following vaginal HSV-2 infection, gps were vaccinated with various combination of glycoproteins and adjuvant with or without subcutaneous or local applications of imiquimod after infection.
View Article and Find Full Text PDFBackground: Although herpes simplex viruses (HSV) are a major target for vaccine development no vaccine is currently licensed.
Methods: A live attenuated HSV virus vaccine, VC2 was compared to a subunit HSV vaccine, glycoprotein D (gD2) administered with the adjuvant, MPL/Alum using the guinea pig model of genital herpes. Three doses of intramuscular (IM) vaccine were provided followed by intravaginal challenge with HSV-2 at either 3 weeks or six months after the last vaccination.
Background: Although development of an HSV vaccine is a priority there is currently no vaccine available. The recent failure of subunit vaccines suggest that presentation of more antigens via a live attenuated vaccine may be required for protection. We therefore evaluated VC2, a live attenuated HSV vaccine, engineered to be unable to enter into neuronal axons.
View Article and Find Full Text PDFCytomegalovirus (CMV) causes a persistent, lifelong infection. CMV persists in a latent state and undergoes intermittent subclinical viral reactivation that is quelled by ongoing T cell responses. While T cells are critical to maintain control of infection, the immunological factors that promote CMV persistence remain unclear.
View Article and Find Full Text PDFCytomegaloviruses (CMVs) establish chronic, systemic infections. Peripheral infection spreads via lymph nodes, which are also a focus of host defence. Thus, this is a point at which systemic infection spread might be restricted.
View Article and Find Full Text PDFBackground: Congenital cytomegalovirus infection can be life-threatening and often results in significant developmental deficits and/or hearing loss. Thus, there is a critical need for an effective anti-CMV vaccine.
Objective: To determine the efficacy of replication-defective lymphocytic choriomeningitis virus (rLCMV) vectors expressing the guinea pig CMV (GPCMV) antigens, gB and pp65, in the guinea pig model of congenital CMV infection.