Multiple bacterial immune systems, including CBASS, Thoeris, and Pycsar, employ signaling molecules that activate the immune response following phage infection. Phages counteract bacterial immune signaling using sponge proteins that bind and sequester the immune signals, but the breadth of immune signals targeted by phage sponges is unclear. Here we study the functional versatility of Acb2, Tad1 and Tad2, three families of sponge proteins known to inhibit CBASS and Thoeris signaling.
View Article and Find Full Text PDFCyclic oligonucleotide-based anti-phage signaling systems (CBASSs) are bacterial anti-phage defense operons that use nucleotide signals to control immune activation. Here, we biochemically screen 57 diverse E. coli and Bacillus phages for the ability to disrupt CBASS immunity and discover anti-CBASS 4 (Acb4) from the Bacillus phage SPO1 as the founding member of a large family of >1,300 immune evasion proteins.
View Article and Find Full Text PDFImmune pathways that use intracellular nucleotide signaling are common in animals, plants and bacteria. Viruses can inhibit nucleotide immune signaling by producing proteins that sequester or cleave the immune signals. Here we analyzed evolutionarily unrelated signal-sequestering viral proteins, finding that they share structural and biophysical traits in their genetic organization, ternary structures and binding pocket properties.
View Article and Find Full Text PDFToll/interleukin-1 receptor (TIR) domains are central components of pattern recognition immune proteins across all domains of life. In bacteria and plants, TIR-domain proteins recognize pathogen invasion and then produce immune signalling molecules exclusively comprising nucleotide moieties. Here we show that the TIR-domain protein of the type II Thoeris defence system in bacteria produces a unique signalling molecule comprising the amino acid histidine conjugated to ADP-ribose (His-ADPR).
View Article and Find Full Text PDFCyclic oligonucleotide-based antiviral signaling systems (CBASS) are bacterial anti-phage defense operons that use nucleotide signals to control immune activation. Here we biochemically screen 57 diverse and phages for the ability to disrupt CBASS immunity and discover anti-CBASS 4 (Acb4) from the phage SPO1 as the founding member of a large family of >1,300 immune evasion proteins. A 2.
View Article and Find Full Text PDFCell Rep Med
February 2024
Microbes are an integral component of the tumor microenvironment. However, determinants of microbial presence remain ill-defined. Here, using spatial-profiling technologies, we show that bacterial and immune cell heterogeneity are spatially coupled.
View Article and Find Full Text PDFMyeloid cells facilitate T cell immune evasion in cancer yet are pliable and have antitumor potential. Here, by cotargeting myeloid activation molecules, we leveraged the myeloid compartment as a therapeutic vulnerability in mouse models of pancreatic cancer. Myeloid cells in solid tumors expressed activation receptors including the pattern recognition receptor Dectin-1 and the TNF receptor superfamily member CD40.
View Article and Find Full Text PDFPurpose: Determinants of treatment outcomes to chemotherapy-based regimens in metastatic pancreatic ductal adenocarcinoma (PDA) remain ill-defined. Our aim was to examine tissue-based correlates of treatment response and resistance using matched baseline and on-treatment biopsies collected from patients with PDA treated in the first-line metastatic setting.
Experimental Design: Patients with treatment-naïve metastatic PDA were enrolled in a Phase II trial (NCT02077881) investigating gemcitabine plus nab-paclitaxel in combination with indoximod, an orally administered small-molecule inhibitor of the IDO pathway.
Cancer Immunol Res
July 2022
Glioblastoma (GBM) is an immunologically "cold" tumor characterized by poor responsiveness to immunotherapy. Standard of care for GBM is surgical resection followed by chemoradiotherapy and maintenance chemotherapy. However, tumor recurrence is the norm, and recurring tumors are found frequently to have acquired molecular changes (e.
View Article and Find Full Text PDFB cells infiltrate pancreatic ductal adenocarcinoma (PDAC) and in preclinical cancer models, can suppress T cell immunosurveillance in cancer. Here, we conducted a pilot study to assess the safety and feasibility of administering lentiviral-transduced chimeric antigen receptor (CAR)-modified autologous T cells redirected against mesothelin to target tumor cells along with CART cells redirected against CD19 to deplete B cells. Both CARs contained 4-1BB and CD3ζ signaling domains.
View Article and Find Full Text PDFThe immune system is a vital determinant of cancer and shapes its trajectory. Notably, the immune reaction to cancer harbors dual potential for suppressing or promoting cancer development and progression. This polarity of the immune response is determined, in part, by the character of the interplay between innate and adaptive immunity.
View Article and Find Full Text PDF