Publications by authors named "Renato A Morais"

High biological diversity (or biodiversity) is thought to bolster communities against disturbances, leading to higher levels of ecosystem functioning. While the biodiversity-ecosystem function (BEF) relationship is evident in studies equating diversity to species richness, it is still unclear which ecological mechanisms can produce different observational BEF effects. Here, we combine 7686 individual growth curves across 1480 species with 2957 local community surveys to generate a process-based estimate of biomass production to assess the BEF relationship across marine reef fishes.

View Article and Find Full Text PDF

Coral reefs are frequently described as "oases in marine deserts" for thriving in nutrient-depleted oceans. This contrast is often termed "Darwin's paradox," which allegedly originates from Charles Darwin's coral reef work. Decades of research exploring these paradoxical dynamics led to groundbreaking findings in ecophysiology, ecology, oceanography, and biogeochemistry.

View Article and Find Full Text PDF

The complex ways in which ongoing warming will restructure ecosystems remains poorly understood. A new simulation study in PLOS Biology suggests that expected changes in food resources for marine consumers will outpace the direct, pervasive effects of predicted +2.5°C warming.

View Article and Find Full Text PDF

Coral bleaching events have become more frequent and severe due to ocean warming. While the large-scale impacts of bleaching events are well-known, there is growing recognition of the importance of small-scale spatial variation in bleaching and survival probability of individual coral colonies. By quantifying bleaching in 108 massive Porites colonies spread across Lizard Island, Great Barrier Reef, during the 2016 bleaching event, we investigated how hydrodynamic exposure levels and colony size contribute to local variability in bleaching prevalence and extent.

View Article and Find Full Text PDF

Ecosystem recovery from human-induced disturbances, whether through natural processes or restoration, is occurring worldwide. Yet, recovery dynamics, and their implications for broader ecosystem management, remain unclear. We explored recovery dynamics using coral reefs as a case study.

View Article and Find Full Text PDF

Sediments are found on all coral reefs around the globe. However, the amount of sediment in different reservoirs, and the rates at which sediments move between reservoirs, can shape the biological functioning of coral reefs. Unfortunately, relatively few studies have examined reef sediment dynamics, and associated bio-physical drivers, simultaneously over matching spatial and temporal scales.

View Article and Find Full Text PDF

Individual growth is a fundamental life history trait, yet its macroevolutionary trajectories have rarely been investigated for entire animal assemblages. Here we analyse the evolution of growth in a highly diverse vertebrate assemblage-coral reef fishes. We combine state-of-the-art extreme gradient boosted regression trees with phylogenetic comparative methods to detect the timing, number, location and magnitude of shifts in the adaptive regime of somatic growth.

View Article and Find Full Text PDF

The TimeFISH database provides the first public time-series dataset on reef fish assemblages in the southwestern Atlantic (SWA), comprising 15 years of data (2007-2022) based on standardized Underwater Visual Censuses (UVCs). The rocky reefs covered by our dataset are influenced by pronounced seasonal cycles of ocean temperatures with warm tropical waters from the Brazil Current in the summer (~27°C) and colder waters from the La Plata River Plume discharge and upwelling from the South Atlantic Central Water in the winter (~18°C). These oceanographic conditions characterize this area as the southernmost tropical-subtropical climatic transition zone in the Atlantic Ocean.

View Article and Find Full Text PDF

Ecosystem processes are challenging to quantify at a community level, particularly within complex ecosystems (e.g., rainforests, coral reefs).

View Article and Find Full Text PDF
Article Synopsis
  • Sediments are common on coral reefs, but previous studies often overlooked hydrodynamic influences and focused on isolated aspects.
  • The research quantified sediment dynamics, measuring suspended sediments, sediment deposition, and the effects of water movement and marine life across different depths.
  • Significant findings included currents transporting 12.6 tons of sediment over the study area in just six days, with 5.2% potentially deposited, and a clear differentiation in sediment behavior between the dynamic shallow reef flat and the stagnant reef slope.
View Article and Find Full Text PDF

The ecological functions of nocturnal coral reef fishes are poorly known. Yet, nocturnal resources for coral reef consumers are theoretically as abundant and productive, if not more so, than their diurnal counterparts. In this study, we quantify and contrast the energetic dynamics of nocturnal and diurnal fishes in a model coral reef ecosystem, evaluating whether they attain similar levels of biomass production.

View Article and Find Full Text PDF

Cleaning symbiosis is critical for maintaining healthy biological communities in tropical marine ecosystems. However, potential negative impacts of mutualism, such as the transmission of pathogens and parasites during cleaning interactions, have rarely been evaluated. Here, we investigated whether the dedicated bluestreak cleaner wrasse, Labroides dimidiatus, is susceptible to and can transmit generalist ectoparasites between client fish.

View Article and Find Full Text PDF

Spatial subsidies increase local productivity and boost consumer abundance beyond the limits imposed by local resources. In marine ecosystems, deeper water and open ocean subsidies promote animal aggregations and enhance biomass that is critical for human harvesting. However, the scale of this phenomenon in tropical marine systems remains unknown.

View Article and Find Full Text PDF

Thermal-stress events have changed the structure, biodiversity, and functioning of coral reefs. But how these disturbances affect the dynamics of individual coral colonies remains unclear. By tracking the fate of 1069 individual Acropora and massive Porites coral colonies for up to 5 years, spanning three bleaching events, we reveal striking genus-level differences in their demographic response to bleaching (mortality, growth, and recruitment).

View Article and Find Full Text PDF

Cumulative anthropogenic stressors on tropical reefs are modifying the physical and community structure of coral assemblages, altering the rich biological communities that depend on this critical habitat. As a consequence, new reef configurations are often characterized by low coral cover and a shift in coral species towards massive and encrusting corals. Given that coral numbers are dwindling in these new reef systems, it is important to evaluate the potential influence of coral predation on these remaining corals.

View Article and Find Full Text PDF

Ecosystem functions underpin productivity and key services to humans, such as food provision. However, as the severity of environmental stressors intensifies, it is becoming increasingly unclear if, and to what extent, critical functions and services can be sustained. This issue is epitomised on coral reefs, an ecosystem at the forefront of environmental transitions.

View Article and Find Full Text PDF

One of the most prominent features of life on Earth is the uneven number of species across large spatial scales. Despite being inherently linked to energetic constraints, these gradients in species richness distribution have rarely been examined from a trophic perspective. Here we dissect the global diversity of over 3,600 coral reef fishes to reveal patterns across major trophic groups.

View Article and Find Full Text PDF

Tropical ectotherms are hypothesized to be vulnerable to environmental changes, but cascading effects of organismal tolerances on the assembly and functioning of reef fish communities are largely unknown. Here, we examine differences in organismal traits, assemblage structure, and productivity of cryptobenthic reef fishes between the world's hottest, most extreme coral reefs in the southern Arabian Gulf and the nearby, but more environmentally benign, Gulf of Oman. We show that assemblages in the Arabian Gulf are half as diverse and less than 25% as abundant as in the Gulf of Oman, despite comparable benthic composition and live coral cover.

View Article and Find Full Text PDF

Reef fishes are an exceptionally speciose vertebrate assemblage, yet the main drivers of their diversification remain unclear. It has been suggested that Miocene reef rearrangements promoted opportunities for lineage diversification, however, the specific mechanisms are not well understood. Here, we assemble near-complete reef fish phylogenies to assess the importance of ecological and geographical factors in explaining lineage origination patterns.

View Article and Find Full Text PDF

Allgeier and Cline suggest that our model overestimates the contributions of cryptobenthic fishes to coral reef functioning. However, their 20-year model ignores the basic biological limits of population growth. If incorporated, cryptobenthic contributions to consumed fish biomass remain high (20 to 70%).

View Article and Find Full Text PDF

Coral reef fisheries support the livelihoods of millions of people in tropical countries, despite large-scale depletion of fish biomass. While human adaptability can help to explain the resistance of fisheries to biomass depletion, compensatory ecological mechanisms may also be involved. If this is the case, high productivity should coexist with low biomass under relatively high exploitation.

View Article and Find Full Text PDF

How coral reefs survive as oases of life in low-productivity oceans has puzzled scientists for centuries. The answer may lie in internal nutrient cycling and/or input from the pelagic zone. Integrating meta-analysis, field data, and population modeling, we show that the ocean's smallest vertebrates, cryptobenthic reef fishes, promote internal reef fish biomass production through extensive larval supply from the pelagic environment.

View Article and Find Full Text PDF

Coral reefs harbor high productivity in nutrient-poor tropical oceans. This exceptional productivity can be explained by high recycling rates [1, 2], deep-water nutrient enrichment [3], and assimilation of external production [4]. Fishes consume this productivity through multiple trophic pathways and, as a result, dominate consumer biomass.

View Article and Find Full Text PDF

The reef flat is one of the largest and most distinctive habitats on coral reefs, yet its role in reef trophodynamics is poorly understood. Evolutionary evidence suggests that reef flat colonization by grazing fishes was a major innovation that permitted the exploitation of new space and trophic resources. However, the reef flat is hydrodynamically challenging, subject to high predation risks and covered with sediments that inhibit feeding by grazers.

View Article and Find Full Text PDF