Human activities contaminate aquatic ecosystems with chemicals like metals and pesticides. Fish, sensitive to pollution, are key toxicological models. Metallothionein (Mt) expression, a biomarker for metal contamination, varies depending on the chemical exposure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Front Bioeng Biotechnol
February 2023
Cell membrane-covered biomimetic nanosystems have allowed the development of homologous nanostructures to bestow nanoparticles with enhanced biointerfacing capabilities. The stability of these structures, however, still represents a challenge for the scientific community. This study is aimed at developing and optimizing cell derived membrane-coated nanostructures upon applying design of experiments (DoE) to improve the therapeutic index by homotypic targeting in cancer cells.
View Article and Find Full Text PDFCOVID-19 has resulted in more than 490 million people being infected worldwide, with over 6 million deaths by April 05th, 2022. Even though the development of safe vaccine options is an important step to reduce viral transmission and disease progression, COVID-19 cases will continue to occur, and for those cases, efficient treatment remains to be developed. Here, a drug repurposing strategy using nanotechnology is explored to develop a therapy for COVID-19 treatment.
View Article and Find Full Text PDFThe use of mass spectrometry-based proteomics has been increasingly applied in nanomaterials risk assessments as it provides a proteome-wide overview of the molecular disturbances induced by its exposure. Here, we used this technique to gain detailed molecular insights into the role of ROS as an effector of AgNP toxicity, by incubating Bend3 cells with AgNP in the absence or presence of an antioxidant N-acetyl L-cystein (NAC). ROS generation is a key player in AgNP-induced toxicity, as cellular homeostasis was kept in the presence of NAC.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2022
Nanomaterials have emerged as promising candidates for cancer therapy and diagnosis as they can solve long-term issues such as drug solubility, systemic distribution, tumor acquired resistance, and improve the performance of diagnostic methods. Among inorganic nanomaterials, AgNPs have been extensively studied in the context of cancer treatment and the reported results have raised exciting expectations. In this review, we provide an overview of the recent research on AgNPs antitumoral properties, their application in different cancer treatment modalities, their potential in biosensors development, and also highlight the main challenges and possible strategies to enable its translation to clinical use.
View Article and Find Full Text PDFBackground: Combination chemotherapy uses drugs that target different cancer hallmarks, resulting in synergistic or additive toxicity. This strategy enhances therapeutic efficacy as well as minimizes drug resistance and side effects. In this study, we investigated whether silver nanoparticles act as a combinatorial partner to cisplatin.
View Article and Find Full Text PDFAlthough multiple studies have reported the toxicological effects and underlying mechanisms of toxicity of silver nanoparticles (AgNP) in a variety of organisms, the interactions of AgNP with environmental contaminants such as cadmium are poorly understood. We used biochemical assays and mass spectrometry-based proteomics to assess the cellular and molecular effects induced by a co-exposure of HepG2 cells to AgNP and cadmium. Cell viability and energy homeostasis were slightly affected after a 4-h exposure to AgNP, cadmium, or a combination of the two; these endpoints were substantially altered after a 24-h co-exposure to AgNP and cadmium, while exposure to one of the two contaminants led only to minor changes.
View Article and Find Full Text PDFToxicological interaction represents a challenge to toxicology, particularly for novel contaminants. There are no data whether silver nanoparticles (AgNPs), present in a wide variety of products, can interact and modulate the toxicity of ubiquitous contaminants, such as nonessential metals. In the current study, we investigated the toxicological interactions of AgNP (size=1-2nm; zeta potential=-23mV), cadmium and mercury in human hepatoma HepG2 cells.
View Article and Find Full Text PDF